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THIS MONTH

POINTS OF SIGNIFICANCE

Classification evaluation
It is important to understand both what a 
classification metric expresses and what it hides.

Last month we examined the use of logistic regression for classifica-
tion, in which the class of a data point is predicted given training 
data1. This month, we look at how to evaluate classifier performance 
on a test set—data that were not used for training and for which 
the true classification is known. Classifiers are commonly evaluated 
using either a numeric metric, such as accuracy, or a graphical repre-
sentation of performance, such as a receiver operating characteristic 
(ROC) curve. We will examine some common classifier metrics and 
discuss the pitfalls of relying on a single metric.

Metrics help us understand how a classifier performs; many are 
available, some with numerous tunable parameters. Understanding 
metrics is also critical for evaluating reports by others—if a study 
presents a single metric, one might question the performance of the 
classifier when evaluated using other metrics. To illustrate the pro-
cess of choosing a metric, we will simulate a hypothetical diagnostic 
test. This test classifies a patient as having or not having a deadly 
disease on the basis of multiple clinical factors. In evaluating the 
classifier, we consider only the results of the test; neither the underly-
ing mechanism of classification nor the underlying clinical factors 
are relevant.

Classification metrics are calculated from true positives (TPs), 
false positives (FPs), false negatives (FNs) and true negatives (TNs), 
all of which are tabulated in the so-called confusion matrix (Fig. 1). 
The relevance of each of these four quantities will depend on the 
purpose of the classifier and motivate the choice of metric. For a 
medical test that determines whether patients receive a treatment 
that is cheap, safe and effective, FPs would not be as important as 
FNs, which would represent patients who might suffer without ade-
quate treatment. In contrast, if the treatment were an experimental 
drug, then a very conservative test with few FPs would be required 
to avoid testing the drug on unaffected individuals.

In Figure 2 we show three classification scenarios for four differ-
ent metrics: accuracy, sensitivity, precision and F1. In each panel, all 
of the scenarios have the same value (0.8) of a given metric. Accuracy 
is the fraction of predictions that are true. Although this metric is 

easy to interpret, high accuracy does not necessarily characterize a 
good classifier. For instance, it tells us nothing about whether FNs 
or FPs are more common (Fig. 2a). If the disease is rare, predict-
ing that all the subjects will be negative offers high accuracy but is 
not useful for diagnosis. A useful measure for understanding FNs is 
sensitivity (also called recall or the true positive rate), which is the 
proportion of known positives that are predicted correctly. However, 
neither TNs nor FPs affect this metric, and a classifier that simply 
predicts that all data points are positive has high sensitivity (Fig. 2b). 
Specificity, which measures the fraction of actual negatives that are 
correctly predicted, suffers from a similar weakness: not accounting 
for FNs or TPs. Both TPs and FPs are captured by precision (also 
called the positive predictive value), which is the proportion of pre-
dicted positives that are correct. However, precision captures neither 
TNs nor FNs (Fig. 2c). A very conservative test that predicts only 
one subject will have the disease—the case that is most certain—has 
a perfect precision score, even though it misses any other affected 
subjects with a less certain diagnosis.

Ideally a medical test should have very low numbers of both FNs 
and FPs. Individuals who do not have the disease should not be 
given unnecessary treatment or be burdened with the stress of a 
positive result, and those who do have the disease should not be 
given false optimism about being disease free. Several aggregate 
metrics have been proposed for classification evaluation that more 
completely summarize the confusion matrix. The most popular 
is the Fβ score, which uses the parameter β to control the balance 
of recall and precision and is defined as Fβ = (1 + β)2(Precision × 
Recall)/(β2 × Precision + Recall). As β decreases, precision is given 
greater weight. With β = 1, we have the commonly used F1 score, 
which balances recall and precision equally and reduces to the sim-
pler equation 2TP/(2TP + FP + FN).

The Fβ score does not capture the full confusion matrix because 
it is based on the recall and precision, neither of which uses TNs, 
which might be important for tests of very prevalent diseases. One 
approach that can capture all the data in the confusion matrix is 
the Matthews correlation coefficient (MCC), which ranges from 
–1 (when the classification is always wrong) to 0 (when it is no 
better than random) to 1 (when it is always correct). It should be 
noted that in a comparison of the results of two classifiers, one 

Figure 2 | The same value of a metric can correspond to very different 
classifier performance. (a–d) Each panel shows three different classification 
scenarios with a table of corresponding values of accuracy (ac), sensitivity 
(sn), precision (pr), F1 score (F1) and Matthews correlation coefficient 
(MCC). Scenarios in a group have the same value (0.8) for the metric in bold 
in each table: (a) accuracy, (b) sensitivity (recall), (c) precision and  
(d) F1 score. In each panel, those observations that do not contribute to the 
corresponding metric are struck through with a red line. The color-coding 
is the same as in Figure 1; for example, blue circles (cases known to be 
positive) on a gray background (predicted to be negative) are FNs.
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Figure 1 | The confusion matrix shows the counts of true and false 
predictions obtained with known data. Blue and gray circles indicate cases 
known to be positive (TP + FN) and negative (FP + TN), respectively, and 
blue and gray backgrounds/squares depict cases predicted as positive  
(TP + FP) and negative (FN + TN), respectively. Equations for calculating 
each metric are encoded graphically in terms of the quantities in the 
confusion matrix. FDR, false discovery rate.
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individuals given unnecessary treatment), and a lower threshold 
will reduce the FN rate (diseased individuals who do not get treat-
ment).

One might wish to evaluate the classifier without having to 
select a specific threshold. For this, consider a list of individu-
als with known disease status ordered by decreasing diagnostic 
score. This list can be visualized using the ROC curve (Fig. 3a). 
When creating an ROC curve, we start at the bottom left corner 
and at the top of our list of prediction scores. As we move down 
the list, if the data are known to be positive (an individual with 
the disease), the line moves up; otherwise it moves to the right. A 
good classifier should aim to reach as close to the top left corner as 
possible. An alternative visualization is the precision–recall (PR) 
curve (Fig. 3b). Its interpretation is slightly different, as the best 
classifier would be as close to the top right as possible, gaining the 
best trade-off of recall and precision. Unlike the ROC curve, the 
PR curve is not monotonic.

Class imbalance can cause ROC curves to be poor visualiza-
tions of classifier performance. For instance, if only 5 out of 100 
individuals have the disease, then we would expect the five posi-
tive cases to have scores close to the top of our list. If our classifier 
generates scores that rank these 5 cases as uniformly distributed 
in the top 15, the ROC graph will look good (Fig. 4a). However, 
if we had used a threshold such that the top 15 were predicted to 
be true, 10 of them would be FPs, which is not reflected in the 
ROC curve. This poor performance is reflected in the PR curve, 
however. Compare this to a situation with 50 diseased individu-
als out of 100. A classifier that gives an equivalent ROC curve 
(Fig. 4b) will now have a favorable PR curve. For these reasons, 
PR curves are recommended for data sets with large class imbal-
ances. Summary metrics of these two graphs are also used: the 
area under the curve (AUC) for the ROC curve and the area under 
the PR curve (AUPRC). Both of these metrics suffer from the 
same limitations as any other single metric.

Understanding the intended use of a classifier is the key to 
selecting appropriate metrics for evaluation. Using one metric—
even an aggregate one like the F1 score—is dangerous without 
proper inspection of the underlying results. Additionally, one 
should always be on the lookout for class imbalance, which is a 
confounding factor that can distort various metrics.
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may have a higher F1 score while the other has a higher MCC. No 
single metric can distinguish all the strengths and weaknesses of 
a classifier.

An important factor in interpreting classification results is class 
balance, which is the prevalence of a disease in the general popula-
tion. Imbalance makes understanding FPs and FNs more impor-
tant. For a rare disease affecting only 2 in 1,000 people, each FP 
has a much larger effect on the proportion of misdiagnoses than it 
would for a more prevalent disease that affects 200 in 1,000 people. 
We shall assume that the prevalence of the disease in the general 
population is reflected in the training and test data. If this is not 
the case, extra care is required to interpret the results.

Imagine a diagnostic test for a disease that gives a numeric score 
for a person having the disease. Instead of a simple positive or 
negative result, the score gives a level of certainty: individuals with 
a higher score are more likely to have the disease. In fact, almost all 
classifiers generate positive or negative predictions by applying a 
threshold to a score. As we discussed last month, a higher thresh-
old will reduce the FP rate (in our example, this represents healthy 

Figure 3 | Graphical evaluation of classifiers. (a,b) Findings obtained 
with the (a) ROC, which plots the true positive rate (TPR) versus the 
false positive rate (FPR), and (b) PR curves. In both panels, curves depict 
classifiers that are (A) good, (B) similar to random classification and  
(C) worse than random. The expected performance of a random classifier is 
shown by the dotted line in a. The equivalent for the PR curve depends on 
the class balance and is not shown.

Figure 4 | Graphical representation of classifier performance avoids setting 
an exact threshold on results but may be insensitive to important aspects 
of the data. (a,b) ROC and PR curves for two data sets with very different 
class balances: (a) 5% positive and (b) 50% positive observations. For each 
panel, observations are shown as vertical lines (top), of which 5% or 50% 
are positive (blue).

a b

FPR

TP
R

0 1

1

0
Recall

Pr
ec
is
io
n

0 1

1

0

A

B

C

A

B

C

a b

FPR

TP
R

0 1

1

0
Recall

Pr
ec
is
io
n

0 1

1

0
FPR

TP
R

0 1

1

0
Recall

Pr
ec
is
io
n

0 1

1

0

ROC PR ROC PRnp
g

©
 2

01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.
np

g
©

 2
01
6 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.




