Sample Size Calculations in Clinical Research
Jun Shao, Hansheng Wang, Shein-Chung Chow.
Chapter 3 : comparing means
3.1 one-sample design
3.1.1 test for equality
3.1.2 test for non-inferiority/superiority
3.1.3 test for equivalence
3.2 two sample parallel design
3.2.1 test for equality
3.2.2 test for non-inferiority/superiority
3.2.3 test for equivalence
3.3 two sample crossover design
3.3.1 test for equality
3.3.2 test for non-inferiority/superiority
3.3.3 test for equivalence
3.4 multiple-sample one-way anova
3.4.1 pairwise comparison
3.4.2 simultaneous comparison
3.5 multiple-sample williams design
3.5.1 test for equality
3.5.2 test for non-inferiority/superiority
3.5.3 test for equivalence
Chapter 4 : large sample tests for proportions
4.1 one-sample design
4.1.1 test for equality
4.1.2 test for non-inferiority/superiority
4.1.3 test for equivalence
4.2 two sample parallel design
4.2.1 test for equality
4.2.2 test for non-inferiority/superiority
4.2.3 test for equivalence
4.3 two sample crossover design
4.3.1 test for equality
4.3.2 test for non-inferiority/superiority
4.3.3 test for equivalence
4.4 one-way analysis of variance
4.4.1 pairwise comparison
4.5 williams design
4.5.1 test for equality
4.5.2 test for non-inferiority/superiority
4.5.3 test for equivalence
4.6 relative risk - parallel design
4.6.1 test for equality
4.6.2 test for non-inferiority/superiority
4.6.3 test for equivalence
4.7 relative risk - crossover design
4.7.1 test for equality
4.7.2 test for non-inferiority/superiority
4.7.3 test for equivalence
Chapter 5 : exact tests for proportions
5.1 binomial test
5.2 fisher's exact test
Chapter 6 : tests for goodness-of-fit and contingency tables
6.1 : tests for goodness-of-fit
6.1.1 pearson's test
6.2 : test for independence - single stratum
6.2.1 pearson's test
6.2.2 likelihood ratio test
6.3 : test for independence - multiple strata
6.3.1 cochran-mantel-haenszel test
6.4 : test for categorical shift
6.4.1 mcnaemar's test
6.4.1 stuart-maxwell test
6.5 : carry-over effect ets
Chapter 14 : nonparametrics
14.2 one-sample location problem
p2=0.30 p3=0.40 p4=0.05 alpha=0.05 pow=0.80 => n=383
14.3 two-sample location problem
p2=0.70 p3=0.80 p4=080 alpha=0.05 pow=0.80 => n=54
14.4 test for independence
p1=0.60 p2=0.70 alpha=0.05 pow=0.80 => n = 135
|