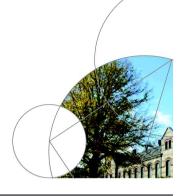
Faculty of Health Sciences

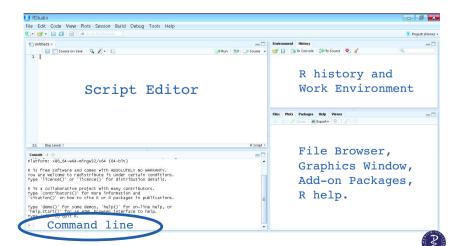


Introduction to R and R studio

Basic statistics for experimental researchers 2017

Julie Forman

Department of Biostatistics, University of Copenhagen



NIVERSITY OF COPENHAGEI

DEPARTMENT OF BIOSTATISTIC

R studio

The user friendly interface that makes working with R much easier.

Let's go for a demonstartion!

Why R?

R has a huge selection of both simple and advanced statistical procedures, and good graphical features.

R is open source - developed by a dedicated international network of statisticians, mostly in universities.

R is well supported. You can get help at SUND's statistical consulting service at the department of Biostatistics and at the many online help forums.

R scripts make reproducible research easy.

R was the preferred statistical software of the 2015/16-students.

2 / 28

DEPARTMENT OF BIOSTATI

Learning R

Nobody learns programming from reading a book or listening to a lecture. **You learn it by doing it**.

- ▶ First try to run the R-scripts from the lectures line by line.
- ► Can you understand the output? And the code?
- ▶ Next try to do a bit of programming on your own by copy pasting from the scripts and making suitable adaptions.
- ➤ You need to use the R-help to find out what exactly the R-functions you are using can do for you.
- ... or maybe ask your friend, statistics teacher, or Google.
- ▶ Actually this is all you need to do statistical analyses in R.

These notes are meant as a short reference guide covering the most basic R syntax, descriptive statistics, and tips for the work flow.

Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

5/28

NIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Vectors and matrices

You store data series and tables in R as vectors and matrices.

```
> myvector <- c(18.1, 7.5, 11.1, 12,4, 8.6)
> myvector
[1] 18.1 7.5 11.1 12.0 4.0 8.6

> mytable <- matrix(c(14, 6, 3, 12, 9, 1), 2, 3)
> mytable
      [,1] [,2] [,3]
[1,] 14 3 9
[2,] 6 12 1
```

You can also generate regular sequences of numbers with seq. This is useful if you want to draw a curve.

```
> xs <- seq(0, 2, by=0.01)
> plot(xs, exp(xs), type='l')
```

Note that arithmetic functions are evaluated *elementwise*.

The command line: R as a pocket calculator

R can do all simple calculations +, -, *, /, powers, logarithms etc.

```
> 2+3
[1] 5
> log(1)
[1] 0
> (1.27^2+2.04^2)/2
[1] 2.88725
```

You can save your results by assigning them to a named R-object

```
> v1 <- 1.27^2
> v2 <- 2.04^2
> (v1+v2)/2
[1] 2.88725
```

Note: R is case sensitive; V1 is not the same as v1.

You can use the rm-function to remove redundant objects.

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Extracting data from vectors and matrices

Use the brackets $[\cdot, \cdot]$ to pick out entries in a vector.

```
> myvector[2]
[1] 7.5
> myvector[myvector>12]
[1] 18.1
> myvector[1] <- 8.1
> myvector
[1] 8.1 7.5 11.1 12.0 4.0 8.6
```

Likewise entries, rows, and columns in a matrix are identified by their indices.

```
mymatrix[2,3]  # entry in second row, third column
mymatrix[1, ]  # the first row
mymatrix[,c(1,3)]  # the first and thrid column
```


Using R-functions

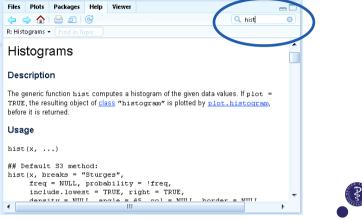
R has a wide range of functions that can do all from simple calculations to generating figures and making statistical analyses.

sqrt(17) summary(mydata) hist(mydata\$volume, probability=TRUE) t.test(volume~type, data=mydata)

Note: R uses *named arguments* so you don't have to remember in which order to state the arguments to a function.

For instance the histogram will be the same if you write

hist(probability=TRUE, x=mydata\$volume)


Common errors

No programming without bugs. Here we list the most typical ones.

- ▶ Misspelled variable name, function name, argument name etc. **Note:** R is case sensitive so X and x is not the same.
- ▶ Missing commas between the arguments of a function.
- ▶ Misplaced or mismatched paranthesis or quotation marks. Note: If R doesn't return output but instead changes the prompt > to +, it means that the command you have submitted is incomplete. You can choose to enter e.g. the missing) or you can press ctrl+c to abort the running R-process and start over.

Using R help

R has built in help where you can look up a function, read which arguments it takes, and see examples of how to use it.

Outline

Working with dataframes

Importing data from a spread sheet (in Windows)

If you keep your data in an excell file you can import it in R.

- 1. Save data in Excell as a csv-file (semicolon separated).
- 2. Read the data into R with the read.csv2-function.

It is importhant to tell R exactly where the datafile is located.

- ► You can cllick your way to where the data is:
 - > mydata <- read.csv2(file.choose(), header=TRUE)</pre>
- ▶ or you can specify the path to where the data is, e.g. by
 setwd("C:/Documents/teaching/basic/Rdemo")
 mydata <- read.csv2("mydatafile.csv", header=TRUE)</pre>

Note: The argument header=TRUE tells R that the first line in the spreadsheet contains the names of the variables. Variable names should not contain any spacing or special characters such as the danish letters æ, ø and å as this will cause trouble in R.

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Adding new variables to a dataframe

Use the transform-furction to add new variables to a dataframe

Transform a quantitative variable:

```
newdata <- transform(mydata, logvolume=log(volume))</pre>
```

Categorize a quantative variable with cut:

Join groups of a categorical variable with factor:

```
newdata <- transform(mydata,
    type = factor(treatment, labels=c('actv','ctrl','actv')) )</pre>
```

Extracting data from a dataframe

Use \$-notation to access the individual variables in your dataframe.

```
mydata$mouseid
table(mydata$treatment)
```

The brackets $[\cdot,\cdot]$ can be used to pick out single entries, whole rows or columns, or a subset of variables. either specifying these by their indices or by their names

```
mydata[1,4]  # is the same
mydata[1,'treatment']  # as this

mydata[1,]  # is the same
mydata[mydata$mouseid==21&mydata$day==1,]  # as this

mydata[,4]  # is the same
mydata[,'treatment']  # as this

mydata[,'treatment']  # as this

mydata[,c('treatment','volume')]
```

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Subsetting

Use the subset-function to pick out a subset of your data for further analysis.

```
day1 <- subset(mydata, day==1)
largesize <- subset(mydata, volume>1000)
missing <- subset(mydata, is.na(volume))</pre>
```

You can also use <, >=, and <= to identify subsets of your data.

It is possible to combine several conditions or negate one; In R & means "and", | means "or", and ! means "not".

```
notmissing <- subset(mydata, !is.na(volume))
nogrowth <- subset(mydata, day>14 & volume<100)</pre>
```


Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

17 / 28

NIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTICS

Group-wise summary statistics

The aggregate-function can be use to compute summary statistics for several treatment groups (and several outcomes).

Note: This only works with brackets and not with \$-notation.

```
> aggregate(day1["volume"], day1["treatment"], mean)
  treatment volume
      chemo 157.0375
      contr 201.6400
3
      radio 172.0750
> aggregate(day1["volume"], day1["treatment"], quantile,
+ \text{ prob}=c(0.25, 0.50, 0.75))
  treatment volume.25% volume.50% volume.75%
      chemo
                54.800
                          107.550
                                      155.625
               100.300
                                      249.575
      contr
                          209.100
3
      radio
                81.800
                          148.150
                                     190.700
```

Summary statistics

The following R-functions computes summary statistics.

R-function	Usage
mean	mean(mydata\$volume)
sd	sd(mydata\$volume)
min	min(mydata\$volume)
max	<pre>max(mydata\$volume)</pre>
range	range(mydata\$volume)
median	median(mydata\$volume)
quantile	<pre>quantile(mydata\$volume, prob=c(0.25,0.75))</pre>
length	<pre>lenght(mydata\$volume)</pre>

Use the table-function to tabulate categorical data. Store the table and use prop.table to get the proportions in each group.

```
> mytab <- table(mydata$treatment)</pre>
```

> prop.table(mytab)

8 / 28

UNIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Making plots in R

To visualize the distribution of a single variable use:

R-function	Usage
hist	hist(mydata\$volume)
boxplot	<pre>boxplot(mydata\$volume)</pre>
stripchart	<pre>stripchart(mydata\$volume)</pre>
barplot	<pre>barplot(table(mydata\$treatment)))</pre>

To visualize the association between two variables use:

R-function	Usage	
plot	<pre>plot(mydata\$day, mydata\$volume) # ATT</pre>	
boxplot	<pre>boxplot(mydata\$volume~mydata\$treatment)</pre>	
stripchart	<pre>stripchart(mydata\$volume~mydata\$treatment)</pre>	
barplot	<pre>barplot(table(mydata\$dead,mydata\$day))</pre>	

ATT: If you apply the function plot to one or two variables or even an entire dataframe, then R chooses a plot that matches the data.

In the above case you get a scatterplot of two numerical variables.

Changing the look of your graphics

The plotting functions in R take additional graphical arguments that will help you make exactly the plot you want for presentation.

type connect point in a scatterplot type='l' lty change the line type lty=2 lwd change the line width lwd=2 pch change the plotting symbol pch=16 col change the color col='blue' xlim change the range on the x-axis xlim=c(0,100) xlab change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects. mar change the width of the margins mar=c(5,6,1,1)	Argument	Effect	Example
lwd change the line width lwd=2 pch change the plotting symbol pch=16 col change the color col='blue' xlim change the range on the x-axis xlim=c(0,100) xlab change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.	type	connect point in a scatterplot	type='l'
pch change the plotting symbol pch=16 col change the color col='blue' xlim change the range on the x-axis xlim=c(0,100) xlab change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.	lty	change the line type	lty=2
col change the color col='blue' xlim change the range on the x-axis xlim=c(0,100) xlab change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.	lwd	change the line width	lwd=2
xlim change the range on the x-axis xlim=c(0,100) xlab change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the range on the x-axis xlim=c(0,100) xlab='Duration (days)' ylim and ylab have similar effects. main change the range on the x-axis xlim=c(0,100) xlab='Duration (days)' ylim and ylab have similar effects.	pch	change the plotting symbol	pch=16
change the label on the x-axis xlab='Duration (days)' ylim and ylab have similar effects. main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.	col	change the color	col='blue'
ylim and ylab have similar effects. main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.	xlim	change the range on the x-axis	$\times lim = c(0,100)$
main change the headline main='Growth curves' cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.	xlab	change the label on the x-axis	xlab='Duration (days)'
cex mangnify the plotting symbol cex=1.5 cex.axis, cex.lab, and cex.main has similar effects.		ylim and ylab have similar effects.	
cex.axis, cex.lab, and cex.main has similar effects.	main	change the headline	main='Growth curves'
	cex	mangnify the plotting symbol	cex=1.5
mar change the width of the margins $mar=c(5,6,1,1)$		cex.axis, cex.lab, and cex.main ha	s similar effects.
	mar	change the width of the margins	mar = c(5,6,1,1)

 $\textbf{Note:} \ \ \textbf{You can also reset Rs defaults with the par-function}.$

NIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Saving figures

Choose Export from the menu in the graphics window.

▶ Use the arrows to browse through the figures you've created.

You can also use R code to export a figure to say a png-file:

png('myfigure.png', height=480, width=640)
hist(mydata\$volume, prob=TRUE, xlab="Volume", main="")
dev.off()

Note: It is important to remember dev.off() to finish the reation of the figure.

Adding elements to a plot

If the following functions are called right after a plotting function then additional elements are overlaid on the plot.

R-function	Effect
points	add one or more points to the plot
lines	similar but the points are joined with lines
abline	adds a straight line to the plot
text	adds text at the specified coordinates
legend	adds a legend to the plot
title	adds a title to the plot

The axis-function allows you to costommize your own axis. Note that before you use it you will have to specify the argument xaxt=FALSE or yaxt=FALSE to your initial plot to leave out Rs default axis.

22 / 28

UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

Writing R-scripts

We strongly recommend that you save the commands for your statistical analyses in R scripts so that you can extend or re-run them later on.

To make a new script choose File \to New File \to R Script from the menu. Don't forget to save the script while you are working on it.

It is a good idea to add many comments in the script. These will help you understand the code if you haven't worked with it for a while or if you want to copy paste from it when you are doing an analysis for a new project.

▶ Write your comments after # in the script.

25 / 28

NIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTICS

Scripting and other short cuts

You can execute your R program from the script editor.

▶ Use ctrl+enter (cmd+enter on Mac) to run the script one line at a time or to run a highlighted section of the script.

When you are working at the command line you don't have to retype the commands that you have alreaddy used.

▶ Use arrows \lor and \land to search trough your previous commands.

You can also look up the commands in the R history window.

- ▶ Double click on a line in the history to execute it.
- ▶ Use shift+double click on a line to copy it to the script editor.

An example

```
# Load the data from "tumorvols.rda" to do exercise 1.
load(file.choose())
# The data "tumordat" should appear in "Envinronment"
summary(tumordat)

# Output histogram to a file.
png("histogram.png", height=480, width=640)
par(cex.lab=2, cex.axis=2)
hist(tumordat$volume, prob=TRUE, xlab="Volume", main="")
dev.off()

# Volumes are skew - use log-transform.
tumordat <- transform(tumordat, logvolume=log(volume))

# Confidence interval for the mean log-volume.
t.test(tumordat$logvolume)$conf.int</pre>
```

NIVERSITY OF COPENHAGEN

DEPARTMENT OF BIOSTATISTIC

Manging your working directory

The working directory is the directory on your computer where R collects and saves data by default.

You can change the working directory by choosing Session \to Set Working Directory \to Choose Directory from the menu or by using the setwd-function.

setwd("C:/Documents/teaching/basic/Rdemo")

When you end a session in R studio and choose save, your R history and work environment get stored in two files .Rhistory and .R in your working directory. Next time you open R studio these files are loaded and everything will appear just as you left them.