
u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Faculty of Health Sciences

Introduction to R and R studio

Basic statistics for experimental researchers 2017

Julie Forman

Department of Biostatistics, University of Copenhagen

ers 2017

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Why R?

R has a huge selection of both simple and advanced statistical
procedures, and good graphical features.

R is open source - developed by a dedicated international network
of statisticians, mostly in universities.

R is well supported. You can get help at SUND’s statistical
consulting service at the department of Biostatistics and at the
many online help forums.

R scripts make reproducible research easy.

R was the preferred statistical software of the 2015/16-students.

2 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

R studio

The user friendly interface that makes working with R much easier.

Let’s go for a demonstartion!3 / 28

Command line

Script Editor
R history and

Work Environment

File Browser,

Graphics Window,

Add-on Packages,

R help.

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Learning R

Nobody learns programming from reading a book or listening to a
lecture. You learn it by doing it.

◮ First try to run the R-scripts from the lectures line by line.

◮ Can you understand the output? And the code?

◮ Next try to do a bit of programming on your own by copy
pasting from the scripts and making suitable adaptions.

◮ You need to use the R-help to find out what exactly the
R-functions you are using can do for you.

◮ . . . or maybe ask your friend, statistics teacher, or Google.

◮ Actually this is all you need to do statistical analyses in R.

These notes are meant as a short reference guide covering the
most basic R syntax, descriptive statistics, and tips for the work
flow.
4 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

5 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

The command line: R as a pocket calculator
R can do all simple calculations +, -, *, /, powers, logarithms etc.

> 2+3

[1] 5

> log(1)

[1] 0

> (1.27^2+2.04^2)/2

[1] 2.88725

You can save your results by assigning them to a named R-object

> v1 <- 1.27^2

> v2 <- 2.04^2

> (v1+v2)/2

[1] 2.88725

Note: R is case sensitive; V1 is not the same as v1.

You can use the rm-function to remove redundant objects.

> rm(v1, v2)6 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Vectors and matrices

You store data series and tables in R as vectors and matrices.

> myvector <- c(18.1, 7.5, 11.1, 12,4, 8.6)

> myvector

[1] 18.1 7.5 11.1 12.0 4.0 8.6

> mytable <- matrix(c(14, 6, 3, 12, 9, 1), 2, 3)

> mytable

[,1] [,2] [,3]

[1,] 14 3 9

[2,] 6 12 1

You can also generate regular sequences of numbers with seq.
This is useful if you want to draw a curve.

> xs <- seq(0, 2, by=0.01)

> plot(xs, exp(xs), type=’l’)

Note that arithmetic functions are evaluated elementwise.
7 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Extracting data from vectors and matrices

Use the brackets [·, ·] to pick out entries in a vector.

> myvector[2]

[1] 7.5

> myvector[myvector>12]

[1] 18.1

> myvector[1] <- 8.1

> myvector

[1] 8.1 7.5 11.1 12.0 4.0 8.6

Likewise entries, rows, and columns in a matrix are identified by
their indices.

mymatrix[2,3] # entry in second row, third column

mymatrix[1,] # the first row

mymatrix[,c(1,3)] # the first and thrid column

8 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Using R-functions

R has a wide range of functions that can do all from simple
calculations to generating figures and making statistical analyses.

sqrt(17)

summary(mydata)

hist(mydata$volume, probability=TRUE)

t.test(volume~type, data=mydata)

Note: R uses named arguments so you don’t have to remember in
which order to state the arguments to a function.

For instance the histogram will be the same if you write

hist(probability=TRUE, x=mydata$volume)

9 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Using R help
R has built in help where you can look up a function, read which
arguments it takes, and see examples of how to use it.

10 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Common errors

No programming without bugs. Here we list the most typical ones.

◮ Misspelled variable name, function name, argument name etc.

Note: R is case sensitive so X and x is not the same.

◮ Missing commas between the arguments of a function.

◮ Misplaced or mismatched paranthesis or quotation marks.

Note: If R doesn’t return output but instead changes the
prompt > to +, it means that the command you have
submitted is incomplete. You can choose to enter e.g. the
missing) or you can press ctrl+c to abort the running
R-process and start over.

11 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

12 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Importing data from a spread sheet (in Windows)

If you keep your data in an excell file you can import it in R.

1. Save data in Excell as a csv-file (semicolon separated).

2. Read the data into R with the read.csv2-function.

It is importhant to tell R exactly where the datafile is located.

◮ You can cllick your way to where the data is:

> mydata <- read.csv2(file.choose(), header=TRUE)

◮ or you can specify the path to where the data is, e.g. by

setwd("C:/Documents/teaching/basic/Rdemo")

mydata <- read.csv2("mydatafile.csv", header=TRUE)

Note: The argument header=TRUE tells R that the first line in the
spreadsheet contains the names of the variables. Variable names
should not contain any spacing or special characters such as the
danish letters æ, ø and å as this will cause trouble in R.
13 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Extracting data from a dataframe
Use $-notation to access the individual variables in your dataframe.

mydata$mouseid

table(mydata$treatment)

The brackets [·, ·] can be used to pick out single entries, whole
rows or columns, or a subset of variables. either specifying these by
their indices or by their names

mydata[1,4] # is the same

mydata[1,’treatment’] # as this

mydata[1,] # is the same

mydata[mydata$mouseid==21&mydata$day==1,] # as this

mydata[,4] # is the same

mydata[,’treatment’] # as this

mydata[,c(’treatment’,’volume’)]
14 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Adding new variables to a dataframe

Use the transform-furction to add new variables to a dataframe

Transform a quantitative variable:

newdata <- transform(mydata, logvolume=log(volume))

Categorize a quantative variable with cut:

newdata <- transform(mydata,

size=cut(volume, c(0,200,500,2000), levels=c(’s’,’m’,’l’)))

Join groups of a categorical variable with factor:

newdata <- transform(mydata,

type = factor(treatment, labels=c(’actv’,’ctrl’,’actv’)))

15 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Subsetting

Use the subset-function to pick out a subset of your data for
further analysis.

day1 <- subset(mydata, day==1)

largesize <- subset(mydata, volume>1000)

missing <- subset(mydata, is.na(volume))

You can also use <, >=, and <= to identify subsets of your data.

It is possible to combine several conditions or negate one;
In R & means "and", | means "or", and ! means "not".

notmissing <- subset(mydata, !is.na(volume))

nogrowth <- subset(mydata, day>14 & volume<100)

16 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

17 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Summary statistics

The following R-functions computes summary statistics.

R-function Usage
mean mean(mydata$volume)

sd sd(mydata$volume)

min min(mydata$volume)

max max(mydata$volume)

range range(mydata$volume)

median median(mydata$volume)

quantile quantile(mydata$volume, prob=c(0.25,0.75))

length lenght(mydata$volume)

Use the table-function to tabulate categorical data. Store the
table and use prop.table to get the proportions in each group.

> mytab <- table(mydata$treatment)

> prop.table(mytab)

18 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Group-wise summary statistics

The aggregate-function can be use to compute summary
statistics for several treatment groups (and several outcomes).

Note: This only works with brackets and not with $-notation.

> aggregate(day1["volume"], day1["treatment"], mean)

treatment volume

1 chemo 157.0375

2 contr 201.6400

3 radio 172.0750

>

> aggregate(day1["volume"], day1["treatment"], quantile,

+ prob=c(0.25, 0.50, 0.75))

treatment volume.25% volume.50% volume.75%

1 chemo 54.800 107.550 155.625

2 contr 100.300 209.100 249.575

3 radio 81.800 148.150 190.700
19 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Making plots in R

To visualize the distribution of a single variable use:

R-function Usage
hist hist(mydata$volume)

boxplot boxplot(mydata$volume)

stripchart stripchart(mydata$volume)

barplot barplot(table(mydata$treatment)))

To visualize the association between two variables use:

R-function Usage
plot plot(mydata$day, mydata$volume) # ATT

boxplot boxplot(mydata$volume~mydata$treatment)

stripchart stripchart(mydata$volume~mydata$treatment)

barplot barplot(table(mydata$dead,mydata$day))

ATT: If you apply the function plot to one or two variables or even an
entire dataframe, then R chooses a plot that matches the data.
In the above case you get a scatterplot of two numerical variables.
20 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Changing the look of your graphics

The plotting functions in R take additional graphical arguments
that will help you make exactly the plot you want for presentation.

Argument Effect Example
type connect point in a scatterplot type=’l’
lty change the line type lty=2
lwd change the line width lwd=2
pch change the plotting symbol pch=16
col change the color col=’blue’
xlim change the range on the x-axis xlim=c(0,100)
xlab change the label on the x-axis xlab=’Duration (days)’

ylim and ylab have similar effects.
main change the headline main=’Growth curves’
cex mangnify the plotting symbol cex=1.5

cex.axis, cex.lab, and cex.main has similar effects.
mar change the width of the margins mar=c(5,6,1,1)

Note: You can also reset Rs defaults with the par-function.
21 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Adding elements to a plot

If the following functions are called right after a plotting function
then additional elements are overlaid on the plot.

R-function Effect
points add one or more points to the plot
lines similar but the points are joined with lines
abline adds a straight line to the plot
text adds text at the specified coordinates
legend adds a legend to the plot
title adds a title to the plot

The axis-function allows you to costommize your own axis.
Note that before you use it you will have to specify the argument
xaxt=FALSE or yaxt=FALSE to your initial plot to leave out Rs
default axis.

22 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Saving figures

Choose Export from the menu in the graphics window.

◮ Use the arrows to browse through the figures you’ve created.

You can also use R code to export a figure to say a png-file:

png(’myfigure.png’, height=480, width=640)

hist(mydata$volume, prob=TRUE, xlab="Volume", main="")

dev.off()

Note: It is important to remenber dev.off() to finish the
creation of the figure.23 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Outline

Basic R syntax

Working with dataframes

Descriptive statistics and graphics

Tips for the work flow

24 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Writing R-scripts

We strongly recommend that you save the commands for your
statistical analyses in R scripts so that you can extend or re-run
them later on.

To make a new script choose File → New File → R Script

from the menu. Don’t forget to save the script while you are
working on it.

It is a good idea to add many comments in the script. These will
help you understand the code if you haven’t worked with it for a
while or if you want to copy paste from it when you are doing an
analysis for a new project.

◮ Write your comments after # in the script.

25 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

An example

Load the data from "tumorvols.rda" to do exercise 1.

load(file.choose())

The data "tumordat" should appear in "Envinronment"

summary(tumordat)

Output histogram to a file.

png("histogram.png", height=480, width=640)

par(cex.lab=2, cex.axis=2)

hist(tumordat$volume, prob=TRUE, xlab="Volume", main="")

dev.off()

Volumes are skew - use log-transform.

tumordat <- transform(tumordat, logvolume=log(volume))

Confidence interval for the mean log-volume.

t.test(tumordat$logvolume)$conf.int

26 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Scripting and other short cuts

You can execute your R program from the script editor.

◮ Use ctrl+enter (cmd+enter on Mac) to run the script one line
at a time or to run a highligthed section of the script.

When you are working at the command line you don’t have to
retype the commands that you have alreaddy used.

◮ Use arrows ∨ and ∧ to search trough your previous commands.

You can also look up the commands in the R history window.

◮ Double click on a line in the history to execute it.

◮ Use shift+double click on a line to copy it to the script editor.

27 / 28

u n i v e r s i t y o f c o p e n h a g e n d e p a r t m e n t o f b i o s t a t i s t i c s

Manging your working directory

The working directory is the directory on your computer where R
collects and saves data by default.

You can change the working directory by choosing Session →

Set Working Directory → Choose Directory from the menu
or by using the setwd-function.

setwd("C:/Documents/teaching/basic/Rdemo")

When you end a session in R studio and choose save, your R history
and work environment get stored in two files .Rhistory and .R in
your working directory. Next time you open R studio these files are
loaded and everything will appear just as you left them.

28 / 28

a

