Christopher Gandrud

Reproducible Research
with R and RStudio

Second Edition

ii

iii

iv

Contents

Preface xiii

Stylistic Conventions xvii

Required R Packages xix

Additional Resources xxi

List of Figures XXV

List of Tables xxvii

I Getting Started 1

1 Introducing Reproducible Research 3

1.1 What Is Reproducible Research? 3

1.2 Why Should Research Be Reproducible? 5

1.2.1 Forscience 5

1.22 Foryou 6

1.3 Who Should Read This Book? 8

1.3.1 Academic researchers. 8

1.3.2 Students. 8

1.3.3 Imstructors 8

1.3.4 Editors 9

1.3.5 Private sector researchers 9

1.4 The Tools of Reproducible Research 10
1.5 Why Use R, knitr/rmarkdown, and RStudio for Reproducible

Research? 11

1.5.1 Installing the main software 13

1.6 Book Overview 14

1.6.1 How toread thisbook 16

1.6.2 Reproduce this book 16

1.6.3 Contents overview 17

2 Getting Started with Reproducible Research 19

2.1 The Big Picture: A Workflow for Reproducible Research . . 19

2.1.1 Reproducible theory 20

vii

viii

2.2

Practical Tips for Reproducible Research
2.2.1 Document everything!
2.2.2 Everything is a (text) file
2.2.3 Al files should be human readable
2.2.4 Explicitly tie your files together
2.2.5 Have a plan to organize, store, and make your files avail-

able

3 Getting Started with R, RStudio, and knitr/rmarkdown

3.1

3.2
3.3

Using R: The Basics
3.1.1 Objects
3.1.2 Component selection
3.1.3 Subscripts
3.1.4 Functions and commands
3.1.5 Arguments
3.1.6 The workspace & history
3.1.7 Global Roptions
3.1.8 Installing new packages and loading functions
Using RStudio
Using knitr and rmarkdown: The Basics
3.3.1 What knitr does
3.3.2 What rmarkdown does
3.3.3 Fileextensions
3.34 Codechunks
3.3.5 Global chunk options
3.3.6 knitr package optionso
3.3.7 Hooks
3.3.8 knitr, rmarkdown, & RStudio
339 knitr& R
3.3.10 rmarkdown and R L.

4 Getting Started with File Management

4.1

4.2
4.3
4.4
4.5
4.6

File Paths & Naming Conventions
4.1.1 Root directories.
4.1.2 Subdirectories & parent directories
4.1.3 Working directories.
4.1.4 Absolute vs. relative paths
4.1.5 Spaces in directory & file names
Organizing Your Research Project
Setting Directories as RStudio Projects
R File Manipulation Commands
Unix-like Shell Commands for File Management
File Navigation in RStudio

II Data Gathering and Storage

22
22
24
24
26

27

29
29
30
36
38
39
40
42
44
44
45
47
47
48
49
50
53
55
95
56
59
61

65
66
66
66
67
67
68
68
70
70
74
78

81

Storing, Collaborating, Accessing Files, and Versioning

5.1
5.2

5.3

5.4

Saving Data in Reproducible Formats
Storing Your Files in the Cloud: Dropbox
5.2.1 Storage
5.2.2 Accessingdata oL
5.2.3 Collaboration,
5.2.4 Version control 0L
Storing Your Files in the Cloud: GitHub
5.3.1 Setting up GitHub: Basic
5.3.2 Version control with Git
5.3.3 Remote storage on GitHub
5.3.4 Accessingon GitHub

5.3.4.1 Collaboration with GitHub
5.3.5 Summing up the GitHub workflow
RStudio & GitHub
5.4.1 Setting up Git/GitHub with Projects
5.4.2 Using Git in RStudio Projects

Gathering Data with R

6.1

6.2
6.3

6.4

Organize Your Data Gathering: Makefiles
6.1.1 R Make-like files
6.1.2 GNUMake

6.1.2.1 Example makefile

6.1.2.2 Makefiles and RStudio Projects

6.1.2.3 Other information about makefiles
Importing Locally Stored Data Sets
Importing Data Sets from the Internet
6.3.1 Data from non-secure (http) URLs.
6.3.2 Data from secure (https) URLs
6.3.3 Compressed data stored online
6.3.4 Data APIs & feeds
Advanced Automatic Data Gathering: Web Scraping

Preparing Data for Analysis

7.1

7.2

Cleaning Data for Merging
7.1.1 Get ahandleon yourdata.
7.1.2 Reshapingdata
7.1.3 Renaming variables.
7.1.4 Orderingdata
7.1.5 Subsettingdata
7.1.6 Recoding string/numeric variables
7.1.7 Creating new variables fromold
7.1.8 Changing variable types
Merging Data Sets L.
721 Binding

7.2.2 The merge command
7.2.3 Duplicate values
7.2.4 Duplicate columns

IIT Analysis and Results

8 Statistical Modeling and knitr

8.1 Incorporating Analyses into the Markup
8.1.1 Full code chunks
8.1.2 Showing code & results inline
8.1.2.1 LaTeX

8.1.2.2 Markdown

8.1.3 Dynamically including non-R code in code chunks . .

8.2 Dynamically Including Modular Analysis Files
8.2.1 Source from a local file.
8.2.2 Source from a non-secure URL (http)
8.2.3 Source from a secure URL (https)

8.3 Reproducibly Random: set.seed
8.4 Computationally Intensive Analyses

9 Showing Results with Tables

9.1 Basic knitr Syntax for Tables

9.2 Table Basics
9.2.1 Tablesin LaTeX
9.2.2 Tables in Markdown/HTML

9.3 Creating Tables from Supported Class R Objects
9.3.1 kable for Markdown and LaTeX
9.3.2 atable for LaTeX and HTML
9.3.3 texreg for LaTeX and HTML
9.3.4 Fitting Large Tables in LaTeX
9.3.5 atable with non-supported class objects
9.3.6 Creating variable description documents with ztable

10 Showing Results with Figures

10.1 Including Non-knitted Graphics
10.1.1 Including graphics in LaTeX
10.1.2 Including graphics in Markdown/HTML

10.2 Basic knitr/rmarkdown Figure Options
10.2.1 Chunk options L.
10.2.2 Global options L.

10.3 Knitting R’s Default Graphics

10.4 Including ggplot2 Graphics
10.4.1 Showing regression results with caterpillar plots

10.5 JavaScript Graphs with googleVis
10.5.1 JavaScript Graphs with htmlwidgets-based packages

153
154
154
156
156
158
159
159
160
162
162
163
164

167
168
168
169
173
177
177
178
181
184
185
188

191
191
192
194
195
195
196
197
200
204
209
212

IV Presentation Documents 213
11 Presenting with knitr/LaTeX 215
11.1 The Basics 215
11.1.1 Getting started with LaTeX editors 216
11.1.2 Basic LaTeX command syntax 216
11.1.3 The LaTeX preamble & body 217
11.1.4 Headings 220
11.1.5 Paragraphs & spacing 221
11.1.6 Horizontal lines 221
11.1.7 Text formatting 221
11.1.8 Math o 223
11.1.9 Lists o e 224
11.1.10Footnotes 225
11.1.11 Cross-references 225
11.2 Bibliographies with BibTeX 225
11.2.1 The .bibfile 225
11.2.2 Including citations in LaTeX documents 227
11.2.3 Generating a BibTeX file of R package citations . . . 227
11.3 Presentations with LaTeX Beamer 230
11.3.1 Beamer basics oL 231
11.3.2 knitr with LaTeX slideshows 234

12 Large knitr/LaTeX Documents: Theses, Books, and Batch
Reports 237
12.1 Planning Large Documents 237
12.2 Large Documents with Traditional LaTeX 238
12.2.1 Inputting/including children 239
12.2.2 Other common features of large documents 240
12.3 knitr and Large Documents 241
12.3.1 The parent document 241
12.3.2 Knitting child documents 242
12.4 Child Documents in a Different Markup Language 243
12.5 Creating Batch Reports 244

13 Presenting on the Web and Other Formats with R Mark-

down 249
13.1 The Basics 249
13.1.1 Getting started with Markdown editors 250
13.1.2 Preamble and document structure 250
13.1.3 Headings 252
13.1.4 Horizontal lines 253
13.1.5 Paragraphs and new lines 253
13.1.6 Italicsand bold 254

13.1.7 Linkso o 254

xii

13.1.8 Special characters and font customization
13.1.9 Lists o o o
13.1.10 Escape characters
13.1.11 Math with MathJax

13.2 Further Customizability with rmarkdown
13.2.1 More on rmarkdown Headers
13.2.2 CSS style files and Markdown

13.3 Slideshows with Markdown, rmarkdown, and HTML
13.3.1 HTML Slideshows with rmarkdown
13.3.2 LaTeX Beamer Slideshows with rmarkdown
13.3.3 Slideshows with Markdown and RStudio’s R Presenta-
tionso L

13.4 Publishing HTML Documents Created by R Markdown . . .
13.4.1 Standalone HTML files
13.4.2 Hosting webpages with Dropbox
13.4.3 GitHub Pages
13.4.4 Further information on R Markdown

14 Conclusion

14.1 Citing Reproducible Research
14.2 Licensing Your Reproducible Research
14.3 Sharing Your Code in Packages
14.4 Project Development: Public or Private?
14.5 Is it Possible to Completely Future-Proof Your Research?

Bibliography

Preface

This book has its genesis in my PhD research at the London School of Eco-
nomics. I started the degree with questions about the 2008/09 financial crisis
and planned to spend most of my time researching capital adequacy require-
ments. But I quickly realized that I would actually spend a large proportion
of my time learning the day-to-day tasks of data gathering, analysis, and re-
sults presentation. After plodding through for a while with Word, Excel, and
Stata, my breaking point came while reentering results into a regression table
after I had tweaked one of my statistical models, yet again. Surely there was a
better way to do research that would allow me to spend more time answering
my research questions. Making research reproducible for others also means
making it better organized and efficient for yourself. My search for a better
way led me straight to the tools for reproducible computational research.
The reproducible research community is very active, knowledgeable, and
helpful. Nonetheless, I often encountered holes in this collective knowledge,
or at least had no resource organize it all together as a whole. That is my
intention for this book: to bring together the skills I have picked up for actually
doing and presenting computational research. Hopefully, the book, along with
making reproducible research more widely used, will save researchers hours of
googling, so they can spend more time addressing their research questions.

Changes to the Second Edition

The tools of reproducible research have developed rapidly since the first edition
of this book was published just two years ago. The second edition has been
updated to incorporate the most important of these advancements, including
discussions of:

e The rmarkdown package, which allows you to create reproducible research
documents in PDF, HTML, and Microsoft Word formats using the simple
and intuitive Markdown syntax.

e Improvements and changes to RStudio’s interface and capabilities, such
as its new tools for handling R Markdown documents.

o Expanded knitr R code chunk capabilities.

e The kable function in the knitr package and the texreg package for dy-
namically creating tables to present your data and statistical results.

xiii

xiv

e An improved discussion of file organization allowing you to take full ad-
vantage of relative file paths so that your documents are more easily re-
producible across computers and systems.

e The dplyr, magrittr, and tidyr packages for fast data manipulation.
¢ Numerous changes to R syntax in user-created packages.

e Changes to GitHub’s and Dropbox’s interfaces.

Acknowledgements

I would not have been able to write this book without many people’s advice
and support. Foremost is John Kimmel, acquisitions editor at Chapman and
Hall. He approached me in Spring 2012 with the general idea and opportunity
for this book. Other editors at Chapman and Hall and Taylor and Francis
have greatly contributed to this project, including Marcus Fontaine. I would
also like to thank all of the book’s reviewers whose helpful comments have
greatly improved it. The first edition’s reviewers include:

e Jeromy Anglim, Deakin University

o Karl Broman, University of Wisconsin, Madison

o Jake Bowers, University of Illinois, Urbana-Champaign

e Corey Chivers, McGill University

e Mark M. Fredrickson, University of Illinois, Urbana-Champaign
e Benjamin Lauderdale, London School of Economics

e« Ramnath Vaidyanathan, McGill University

The developer and blogging community has also been incredibly important
for making this book possible. Foremost among these people is Yihui Xie. He
is the main developer behind the knitr package, co-developer of rmarkdown,
and also an avid blog writer and commenter. Without him the ability to do
reproducible research would be much harder and the blogging community that
spreads knowledge about how to do these things would be poorer. Other great
contributors to the reproducible research community include Carl Boettiger,
Karl Broman, Markus Gesmann (who developed googleVis), Rob Hyndman,
and Hadley Wickham (who has developed numerous very useful R packages).
Thank you also to Victoria Stodden and Michael Malecki for helpful sugges-
tions. And, of course, thank you to everyone at RStudio (especially JJ Allaire)
for creating an increasingly useful program for reproducible research.

XV

The second edition has benefited immensely from first edition read-
ers’ comments and suggestions. For a list of their valuable contribu-
tions, please see the book’s GitHub Issues page https://GitHub.com/
christophergandrud/Rep-Res-Book/issues and the first edition’s Errata
page http://christophergandrud.GitHub.io/RepResR-RStudio/errata.
htm.

My students at Yonsei University were an important part of making the
first edition. One of the reasons that I got interested in using many of the tools
covered in this book, like using knitr in slideshows, was to improve a course I
taught there: Introduction to Social Science Data Analysis. I tested many of
the explanations and examples in this book on my students. Their feedback
has been very helpful for making the book clearer and more useful. Their
experience with using these tools on Microsoft Windows computers was also
important for improving the book’s Windows documentation. Similarly, my
students at the Hertie School of Governance inspired and tested key sections
of the second edition.

The vibrant community at Stack Overflow http://stackoverflow.com/
and Stack Exchange http://stackexchange.com/ are always very helpful
for finding answers to problems that plague any computational researcher.
Importantly, the sites make it easy for others to find the answers to questions
that have already been asked.

My wife, Kristina Gandrud, has been immensely supportive and patient
with me throughout the writing of this book (and pretty much my entire
academic career). Certainly this is not the proper forum for musing about
marital relations, but I’ll do a musing anyways. Having a person who supports
your interests, even if they don’t completely share them, is immensely helpful
for a researcher. It keeps you going.

Stylistic Conventions

I use the following conventions throughout this book:

o Abstract variables: Abstract variables, i.e. variables that do not repre-
sent specific objects in an example, are in ALL. CAPS TYPEWRITER TEXT.

o Clickable buttons: Clickable Buttons are in typewriter text.
o Code: All code is in typewriter text.

o Filenames and directories: Filenames and directories more generally
are printed in italics. I use CamelBack for file and directory names.

o File extensions: Like filenames, file extensions are italicized.

¢ Individual variable values: Individual variable values mentioned in the
text are in dtalics.

e Objects: Objects are printed in italics. I use CamelBack for object names.
e Object columns: Data frame object columns are printed in italics.
e Packages: R packages are printed in italics.

e Windows and RStudio panes: Open windows and RStudio panes are
written in italics.

e Variable names: Variable names are printed in bold. I use CamelBack
for individual variable names.

xXvii

Required R Packages

In this book I discuss how to use a number of user-written R packages for
reproducible research. Many of these packages are not included in the default
R installation. They need to be installed separately.

Note: in general you should aim to minimize the number of packages that
your research depends on. Doing so will lessen the possibility that your code
will “break” when a package is updated. This book depends on relatively many
packages because of its special and unusual purpose of illustrating a variety
of tools that you can use for reproducible research.

To install key user-written packages discussed in this book, copy the fol-
lowing code and paste it into your R console:

install.packages(c("brew", "countrycode",
"devtools", "dplyr",
"ggplot2", "googleVis",
"knitr", "MCMCpack",

"repmis", "RCurl",
"rmarkdown", "texreg",
|ltidyrll IIWDIII

"xtable", "Zelig"))

Once you enter this code, you may be asked to select a CRAN “mirror” to
download the packages from.! Simply select the mirror closest to you.

In Chapter 9 we use the Zelig package [Owen et al., 2013] to create a
simple Bayesian normal linear regression. For this to work properly you will
need to install an additional package called ZeligBayesian [Owen, 2011]. To
do this, type the following code into your R console:

install.packages("ZeligBayesian",
repos = "http://r.iq.harvard.edu/",
type = "source")

1CRAN stands for the Comprehensive R Archive Network.

Xix

XX

Special issues for Windows and Linuz Users

If you are using Windows, you will also need to install Rtools [Ripley and
Murdoch, 2012]. You can download Rtools from: http://cran.r-project.
org/bin/windows/Rtools/. Please use the recommended installation to en-
sure that your system PATH is set up correctly. Otherwise your computer will
not know where the tools are.

On Linux you will need to install the RCurl [Temple Lang and the
CRAN team, 2015] and XML [Temple Lang and the CRAN Team, 2015] pack-
ages separately. Use your Terminal to install these packages with the following
code:

sudo apt-get update

sudo apt-get install libcurl4-gnutls-dev
sudo apt-get install libxml2-dev

sudo apt-get install r-cran-xml

sudo apt-get install r-cran-rjava

Additional Resources

Additional resources that supplement the examples in this book can be freely
downloaded and experimented with. These resources include longer examples
discussed in individual chapters and a complete short reproducible research
project.

Chapter Examples

Longer examples discussed in individual chapters, including files to dynam-
ically download data, code for creating figures, and markup files for cre-
ating presentation documents, can be accessed at: https://GitHub.com/
christophergandrud/Rep-Res-Examples. Please see Chapter 5 for more in-
formation on downloading files from GitHub, where the examples are stored.

Short Example Project

To download a full (though very short) example of a reproducible re-
search project created using the tools covered in this book go to: https://
GitHub.com/christophergandrud/Rep-Res-ExampleProjectl. Please fol-
low the replication instructions in the main README.md file to fully replicate
the project. It is probably a good idea to hold off looking at this complete
example in detail until after you have become acquainted with the individual
tools it uses. Become acquainted with the tools by reading through this book
and working with the individual chapter examples.

The following two figures give you a sense of how the example’s files are
organized. Figure 1 shows how the files are organized in the file system. Figure
2 illustrates how the main files are dynamically tied together. In the Data
directory we have files to gather raw data from the World Bank [2015] on
fertilizer consumption and from Pemstein et al. [2010] on countries’ levels of
democracy. They are tied to the data through the WDI and download.file
commands. A Makefile can run Gatherl.R and Gather2.R to gather and clean
the data. It runs MergeData.R to merge the data into one data file called
MainData.csv. It also automatically generates a variable description file and
a README.md recording the session info.

The Analysis folder contains two files that create figures presenting this
data. They are tied to MainData.csv with the read.csv command. These files
are run by the presentation documents when they are knitted. The presen-

XX1

tation documents tie to the analysis documents with knitr and the source
command.

Though a simple example, hopefully these files will give you a complete
sense of how a reproducible research project can be organized. Please feel
free to experiment with different ways of organizing the files and tying them
together to make your research really reproducible.

FIGURE 1: Short Example Project File Tree

4| Rep-Res-ExampleProject1 I
Analysis @
GoogleVisMap.R ‘

ScatterUDSFert.R ‘ Main.bib

EITU

|

MainData.csv
Makefile
MergeData.R

Gatherl.R

Gather2.R

—{ MainData_ VariableDescriptions.md

README.Rmd

xxii

U 9IISIAN ——

Jpd-moysapI[g «——

Jpd-opPray «—

Iam

0In0s o3x8uW
ASD " peal
Lqpuy el

oTTJ peoTuMop

pury o3sqom
A/
A deysiAe[8005)
A/
MUY MOYSIPI[S ASD R)R(JUIRIA g gIeyjen)
—_— —
A HeISAN 1031808 H \ /
wrgepuy | HrEedRBEN ejeq SAN Mey

o[yorRIN

/

A TI0YIRD

A\

ered 1AM mey

soLT, o[urely odurexy 104§ 7z HUNDIA

xxiii

XXiv

Updates

Many of the reproducible research tools discussed in this book are improving
rapidly. Because of this I will regularly post updates to the content covered
in the book at: https://GitHub.com/christophergandrud/Rep-Res-Book.

Corrections

If you notice any corrections that should be made to fix typos, bro-
ken URLs, and so on, you can report them at: https://GitHub.
com/christophergandrud/Rep-Res-Book/issues. I'll post notifications of
changes to an Errata page at: http://christophergandrud.GitHub.io/
RepResR-RStudio/errata.htm.

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

6.1

7.1

10.1
10.2
10.3
10.4
10.5
10.6

11.1
11.2

Short Example Project File Tree xxii
Short Example Main File Ties. xxiii

Example Workflow & a Selection of Commands to Tie It To-

gether 21
R Startup Console 30
RStudio Startup Panelo 46
RStudio Source Code Pane Top Bars 47
The knitr/rmarkdown Process 48
The New R Markdown Options Window 50
RStudio Notebook Example 57
Folding Code Chunks in RStudio 59
Example Research Project File Tree 68
An Example RStudio Project Menu 69
A Basic Git Repository with Hidden .git Folder Revealed . . 91
Part of this Book’s GitHub Repository Webpage 94
Part of this Book’s GitHub Repository Commit History Page 96
Creating RStudio Projects 105
Creating RStudio Projects in New Directories 106
The RStudio Git Tab 107
The RStudio Build Tab 116
Density Plot of Fertilizer Consumption (kilograms per hectare

of arable land) oo 136
An Example Figure in LaTeX 194
Example Simple Scatter Plot Using plot 199
Example of a Scatterplot Matrix in a Markdown Document . 201
Example Multi-line Time Series Plot Created with ggplot2 . . 205
An Example Caterpillar Plot Created with ggplot2 208
Screenshot of a googleVis Geo Chart 211
RStudio TeX Format Options 216
Knitted Beamer PDF Example 232

XXV

XXVi

12.1
12.2

13.1
13.2
13.3
13.4
13.5
13.6

The brew + knitr Process 244
Snippet of an Example PDF Document Created with brew +

knitr . . oL 248
R Markdown Compile Dropdown Menu 250
Example Rendered R Markdown Document 252
rmarkdown /10 Slides Example Title Slide 263
Create New rmarkdown Presentation in RStudio 264
rmarkdown/Beamer Example Title Slide 265

RStudio R Presentation Pane 268

List of Tables

2.1 A Selection of Commands/Packages/Programs for Tying To-

gether Your Research Files 28
3.1 A Selection of knitr Code Chunk Options 54
5.1 A Selection of Git Commands 95
7.1 Long Formatted Data Example 131
7.2 Long Formatted Time-Series Cross-Sectional Data Example . 132
7.3 Wide Formatted Data Example 132
7.4 R’s Logical Operators 138
7.5 Example Factor Levels 140
8.1 A Selection of knitr engine Values 160
9.1 Example Simple LaTeX Table 172
9.2 Linear Regression, Dependent Variable: Exam Score 180
9.3 Nested Estimates Table with texreg 183
9.4 Coefficient Estimates Predicting Examination Scores in Swiss

Cantons (1888) Found Using Bayesian Normal Linear Regres-

SION . . 188
11.1 LaTeX Font Size Commands 222
11.2 A Selection of natbib In-text Citation Style Commands 228
13.1 A Selection of Pandoc In-text Citations 258

XXVil

Part 1

Getting Started

1

Introducing Reproducible Research

Research is often presented in very selective containers: slideshows, journal
articles, books, or maybe even websites. These presentation documents an-
nounce a project’s findings and try to convince us that the results are correct
[Mesirov, 2010]. It’s important to remember that these documents are not
the research. Especially in the computational and statistical sciences, these
documents are the “advertising”. The research is the “full software environ-
ment, code, and data that produced the results” [Buckheit and Donoho, 1995,
Donoho, 2010, 385]. When we separate the research from its advertisement we
are making it difficult for others to verify the findings by reproducing them.

This book gives you the tools to dynamically combine your research with
the presentation of your findings. The first tool is a workflow for reproducible
research that weaves the principles of reproducibility throughout your entire
research project, from data gathering to the statistical analysis, and the pre-
sentation of results. You will also learn how to use a number of computer tools
that make this workflow possible. These tools include:

the R statistical language that will allow you to gather data and analyze
it;

e the LaTeX and Markdown markup languages that you can use to create
documents—slideshows, articles, books, and webpages—for presenting your
findings;

o the knitr and rmarkdown packages for R and other tools, including
command-line shell programs like GNU Make and Git version con-
trol, for dynamically tying your data gathering, analysis, and presentation
documents together so that they can be easily reproduced;

¢ RStudio, a program that brings all of these tools together in one place.

1.1 What Is Reproducible Research?

Though there is some debate over what are the necessary and sufficient con-
ditions for a replication [Makel and Plucker, 2014, 2], research results are
generally considered replicable if there is sufficient information available for
independent researchers to make the same findings using the same procedures

3

4 Reproducible Research with R and RStudio Second Edition

with new data.! For research that relies on experiments, this can mean a
researcher not involved in the original research being able to rerun the experi-
ment, including sampling, and validate that the new results are comparable to
the original ones. In computational and quantitative empirical sciences, results
are replicable if independent researchers can recreate findings by following the
procedures originally used to gather the data and run the computer code. Of
course, it is sometimes difficult to replicate the original data set because of is-
sues such as limited resources to gather new data or because the original study
already sampled the full universe of cases. So as a next-best standard we can
aim for “really reproducible research” [Peng, 2011, 1226].2 In computational
sciences® this means:

the data and code used to make a finding are available and they are
sufficient for an independent researcher to recreate the finding.

In practice, research needs to be easy for independent researchers to repro-
duce [Ball and Medeiros, 2011]. If a study is difficult to reproduce it’s more
likely that no one will reproduce it. If someone does attempt to reproduce
this research, it will be difficult for them to tell if any errors they find were
in the original research or problems they introduced during the reproduction.
In this book you will learn how to avoid these problems.

In particular you will learn tools for dynamically “knitting”* the data
and the source code together with your presentation documents. Combined
with well-organized source files and clearly and completely commented code,
independent researchers will be able to understand how you obtained your
results. This will make your computational research easily reproducible.

IThis is close to what Lykken [1968] calls “operational replication”.

2The idea of really reproducible computational research was originally thought of and
implemented by Jon Claerbout and the Stanford Exploration Project beginning in the 1980s
and early 1990s [Fomel and Claerbout, 2009, Donoho et al., 2009]. Further seminal advances
were made by Jonathan B. Buckheit and David L. Donoho who created the Wavelab library
of MATLAB routines for their research on wavelets in the mid-1990s [Buckheit and Donoho,
1995].

3Reproducibility is important for both quantitative and qualitative research [King et al.,
1994]. Nonetheless, we will focus mainly on on methods for reproducibility in quantitative
computational research.

4Much of the reproducible computational research and literate programming literatures
have traditionally used the term “weave” to describe the process of combining source code
and presentation documents [see Knuth, 1992, 101]. In the R community weave is usually
used to describe the combination of source code and LaTeX documents. The term “knit”
reflects the vocabulary of the knitr R package (knit + R). It is used more generally to
describe weaving with a variety of markup languages. The term is used by RStudio if you
are using the rmarkdown package, which is similar to knitr. We also cover the rmarkdown
package in this book. Because of this, I use the term knit rather than weave in this book.

Introducing Reproducible Research 5

1.2 Why Should Research Be Reproducible?

Reproducible research is one of the main components of science. If that’s not
enough reason for you to make your research reproducible, consider that the
tools of reproducible research also have direct benefits for you as a researcher.

1.2.1 For science

Replicability has been a key part of scientific inquiry from perhaps the 1200s
[Bacon, 1267/1859, Nosek et al., 2012]. It has even been called the “demarca-
tion between science and non-science” [Braude, 1979, 2]. Why is replication
so important for scientific inquiry?

Standard to judge scientific claims

Replication opens claims to scrutiny, allowing us to keep what works and dis-
card what doesn’t. Science, according to the American Physical Society, “is
the systematic enterprise of gathering knowledge ...organizing and condens-
ing that knowledge into testable laws and theories”. The “ultimate standard”
for evaluating scientific claims is whether or not the claims can be replicated
[Peng, 2011, Kelly, 2006]. Research findings cannot even really be considered
“genuine contribution[s] to human knowledge” until they have been verified
through replication [Stodden, 2009a, 38]. Replication “requires the complete
and open exchange of data, procedures, and materials”. Scientific conclusions
that are not replicable should be abandoned or modified “when confronted

with more complete or reliable . ..evidence”.?

Reproducibility enhances replicability. If other researchers are able to
clearly understand how a finding was originally made, then they will be better
able to conduct comparable research in meaningful attempts to replicate the
original findings. Sometimes strict replicability is not feasible, for example,
when it is only possible to gather one data set on a population of interest.
In these cases reproducibility is a “minimum standard” for judging scientific
claims [Peng, 2011].

It is important to note that though reproducibility is a minimum standard
for judging scientific claims, “a study can be reproducible and still be wrong”
[Peng, 2014]. For example, a statistically significant finding in one study may
remain statistically significant when reproduced using the original data/code,
but when researchers try to replicate it using new data and even methods,
they are unable to find a similar result. The original finding could simply
have been noise, even though it is fully reproducible.

5See the American Physical Society’s website at http://www.aps.org/policy/
statements/99_6.cfm. See also Fomel and Claerbout [2009].

6 Reproducible Research with R and RStudio Second Edition

Avoiding effort duplication & encouraging cumulative knowledge development

Not only is reproducibility important for evaluating scientific claims, it can
also contribute to the cumulative growth of scientific knowledge [Kelly, 2006,
King, 1995]. Reproducible research cuts down on the amount of time scientists
have to spend gathering data or developing procedures that have already been
collected or figured out. Because researchers do not have to discover on their
own things that have already been done, they can more quickly build on
established findings and develop new knowledge.

1.2.2 For you

Working to make your research reproducible does require extra upfront effort.
For example, you need to put effort into learning the tools of reproducible
research by doing things such as reading this book. But beyond the clear ben-
efits for science, why should you make this effort? Using reproducible research
tools can make your research process more effective and (hopefully) ultimately
easier.

Better work habits

Making a project reproducible from the start encourages you to use better
work habits. It can spur you to more effectively plan and organize your re-
search. It should push you to bring your data and source code up to a higher
level of quality than you might if you “thought ‘no one was looking’ ” [Donoho,
2010, 386]. This forces you to root out errors—a ubiquitous part of compu-
tational research—earlier in the research process [Donoho, 2010, 385]. Clear
documentation also makes it easier to find errors.®

Reproducible research needs to be stored so that other researchers can ac-
tually access the data and source code. By taking steps to make your research
accessible for others you are also making it easier for yourself to find your
data and methods when you revise your work or begin new a project. You
are avoiding personal effort duplication, allowing you to cumulatively build
on your own work more effectively.

Better teamwork

The steps you take to make sure an independent researcher can figure out
what you have done also make it easier for your collaborators to understand
your work and build on it. This applies not only to current collaborators, but
also future collaborators. Bringing new members of a research team up to
speed on a cumulatively growing research project is faster if they can easily
understand what has been done already [Donoho, 2010, 386].

60f course, it’s important to keep in mind that reproducibility is “neither necessary nor
sufficient to prevent mistakes” [Stodden, 2009b].

Introducing Reproducible Research 7

Changes are easier

A third person may or may not actually reproduce your research even if you
make it easy for them to do so. But, you will almost certainly reproduce parts or
even all of your own research. No actual research process is completely linear.
You almost never gather data, run analyses, and present your results without
going backwards to add variables, make changes to your statistical models,
create new graphs, alter results tables in light of new findings, and so on. You
will probably try to make these changes long after you last worked on the
project and long since you remembered the details of how you did it. Whether
your changes are because of journal reviewers’ and conference participants’
comments or you discover that new and better data has been made available
since beginning the project, designing your research to be reproducible from
the start makes it much easier to change things later on.

Dynamic reproducible documents in particular can make changing things
much easier. Changes made to one part of a research project have a way of
cascading through the other parts. For example, adding a new variable to a
largely completed analysis requires gathering new data and merging it with
existing data sets. If you used data imputation or matching methods you may
need to rerun these models. You then have to update your main statistical
analyses, and recreate the tables and graphs you used to present the results.
Adding a new variable essentially forces you to reproduce large portions of your
research. If when you started the project you used tools that make it easier
for others to reproduce your research, you also made it easier to reproduce the
work yourself. You will have taken steps to have a “better relationship with
[your] future [self]” [Bowers, 2011, 2].

Higher research impact

Reproducible research is more likely to be useful for other researchers than
non-reproducible research. Useful research is cited more frequently [Donoho,
2002, Piwowar et al., 2007, Vandewalle, 2012]. Research that is fully repro-
ducible contains more information, i.e. more reasons to use and cite it, than
presentation documents merely showing findings. Independent researchers
may use the reproducible data or code to look at other, often unanticipated,
questions. When they use your work for a new purpose they will (should) cite
your work. Because of this, Vandewalle et al. even argue that “the goal of
reproducible research is to have more impact with our research” [2007, 1253].

A reason researchers often avoid making their research fully reproducible
is that they are afraid other people will use their data and code to compete
with them. I'll let Donoho et al. address this one:

True. But competition means that strangers will read your papers, try
to learn from them, cite them, and try to do even better. If you prefer
obscurity, why are you publishing? [2009, 16]

8 Reproducible Research with R and RStudio Second Edition
1.3 'Who Should Read This Book?

This book is intended primarily for researchers who want to use a systematic
workflow that encourages reproducibility as well as practical state-of-the-art
computational tools to put this workflow into practice. These people include
professional researchers, upper-level undergraduate, and graduate students
working on computational data-driven projects. Hopefully, editors at academic
publishers will also find the book useful for improving their ability to evaluate
and edit reproducible research.

The more researchers that use the tools of reproducibility the better. So
I include enough information in the book for people who have very limited
experience with these tools, including limited experience with R, LaTeX, and
Markdown. They will be able to start incorporating reproducible research
tools into their workflow right away. The book will also be helpful for people
who already have general experience using technologies such as R and LaTeX,
but would like to know how to tie them together for reproducible research.

1.3.1 Academic researchers

Hopefully so far in this chapter I've convinced you that reproducible research
has benefits for you as a member of the scientific community and personally
as a computational researcher. This book is intended to be a practical guide
for how to actually make your research reproducible. Even if you already use
tools such as R and LaTeX you may not be leveraging their full potential.
This book will teach you useful ways to get the most out of them as part of
a reproducible research workflow.

1.3.2 Students

Upper-level undergraduate and graduate students conducting original compu-
tational research should make their research reproducible for the same reasons
that professional researchers should. Forcing yourself to clearly document the
steps you took will also encourage you to think more clearly about what you
are doing and reinforce what you are learning. It will hopefully give you a
greater appreciation of research accountability and integrity early in your ca-
reer [Barr, 2012, Ball and Medeiros, 2011, 183].

Even if you don’t have extensive experience with computer languages, this
book will teach you specific habits and tools that you can use throughout your
student research and hopefully your careers. Learning these things earlier will
save you considerable time and effort later.

1.3.3 Instructors

When instructors incorporate the tools of reproducible research into their as-
signments they not only build students’ understanding of research best prac-

Introducing Reproducible Research 9

tice, but are also better able to evaluate and provide meaningful feedback on
students’ work [Ball and Medeiros, 2011, 183]. This book provides a resource
that you can use with students to put reproducibility into practice.

If you are teaching computational courses, you may also benefit from mak-
ing your lecture material dynamically reproducible. Your slides will be easier
to update for the same reasons that it is easier to update research. Making the
methods you used to create the material available to students will give them
more information. Clearly documenting how you created lecture material can
also pass information on to future instructors.

1.3.4 Editors

Beyond a lack of reproducible research skills among researchers, an imped-
iment to actually creating reproducible research is a lack of infrastructure
to publish it [Peng, 2011]. Hopefully, this book will be useful for editors at
academic publishers who want to be better at evaluating reproducible re-
search, editing it, and developing systems to make it more widely available.
The journal Biostatistics is a good example of a publication that is encourag-
ing (actually requiring) reproducible research. From 2009 the journal has had
an editor for reproducibility that ensures replication files are available and
that results can be replicated using these files [Peng, 2009]. The more editors
there are with the skills to work with reproducible research the more likely it
is that researchers will do it.

1.3.5 Private sector researchers

Researchers in the private sector may or may not want to make their work
easily reproducible outside of their organization. However, that does not mean
that significant benefits cannot be gained from using the methods of repro-
ducible research. First, even if public reproducibility is ruled out to guard
proprietary information,” making your research reproducible to members of
your organization can spread valuable information about how analyses were
done and data was collected. This will help build your organization’s knowl-
edge and avoid effort duplication. Just as a lack of reproducibility hinders the
spread of information in the scientific community, it can hinder it inside of a
private organization. Using the sort of dynamic automated processes run with
clearly documented source code we will learn in this book can also help create
robust data analysis methods that help your organization avoid errors that
may come from cutting-and-pasting data across spreadsheets.®

"There are ways to enable some public reproducibility without revealing confidential
information. See Vandewalle et al. [2007] for a discussion of one approach.

8See this post by David Smith about how the J.P. Morgan “Lon-
don Whale” problem may have been prevented with the type of pro-
cesses covered in this book: http://blog.revolutionanalytics.com/2013/02/
did-an-excel-error-bring-down-the-london-whale.html (posted 11 February 2013).

10 Reproducible Research with R and RStudio Second Edition

Also, the tools of reproducible research covered in this book enable you to
create professional standardized reports that can be easily updated or changed
when new information is available. In particular, you will learn how to create
batch reports based on quantitative data.

1.4 The Tools of Reproducible Research

This book will teach you the tools you need to make your research highly
reproducible. Reproducible research involves two broad sets of tools. The first
is a reproducible research environment that includes the statistical tools
you need to run your analyses as well as “the ability to automatically track
the provenance of data, analyses, and results and to package them (or pointers
to persistent versions of them) for redistribution”. The second set of tools is a
reproducible research publisher, which prepares dynamic documents for
presenting results and is easily linked to the reproducible research environment
[Mesirov, 2010, 415].

In this book we will focus on learning how to use the widely available
and highly flexible reproducible research environment—-R/RStudio [R Core
Team, 2014, RStudio, Inc., 2015].” R/RStudio can be linked to numerous
reproducible research publishers such as LaTeX and Markdown with Yihui
Xie’s knitr package [2015b] or the related rmarkdown package [Allaire et al.,
2015a]. The main tools covered in this book include:

e R: a programming language primarily for statistics and graphics. It can
also be useful for data gathering and creating presentation documents.

e knitr and rmarkdown: related R packages for literate programming.
They allow you to combine your statistical analysis and the presentation
of the results into one document. They work with R and a number of other
languages such as Bash, Python, and Ruby.

e« Markup languages: instructions for how to format a presentation doc-
ument. In this book we cover LaTeX, Markdown, and a little HTML.

o RStudio: an integrated developer environment (IDE) for R that tightly
combines R, knitr, rmarkdown, and markup languages.

o Cloud storage & versioning: Services such as Dropbox and Git/GitHub
that can store data, code, and presentation files, save previous versions of

these files, and make this information widely available.

o Unix-like shell programs: These tools are useful for working with large

9The book was created with R version 3.2.1 and developer builds of RStudio version
0.99.370.

Introducing Reproducible Research 11

research projects.'® They also allow us to use command-line tools includ-
ing GNU Make for compiling projects and Pandoc, a program useful for
converting documents from one markup language to another.

1.5 Why Use R, knitr/rmarkdown, and
RStudio for Reproducible Research?

Why R?

Why use a statistical programming language like R for reproducible research?
R has a very active development community that is constantly expanding
what it is capable of. As we will see in this book, R enables researchers across
a wide range of disciplines to gather data and run statistical analyses. Using
the knitr or rmarkdown package, you can connect your R-based analyses to
presentation documents created with markup languages such as LaTeX and
Markdown. This allows you to dynamically and reproducibly present results
in articles, slideshows, and webpages.

The way you interact with R has benefits for reproducible research. In gen-
eral you interact with R (or any other programming and markup language)
by explicitly writing down your steps as source code. This promotes repro-
ducibility more than your typical interactions with Graphical User Interface
(GUI) programs like SPSS' and Microsoft Word. When you write R code and
embed it in presentation documents created using markup languages, you are
forced to explicitly state the steps you took to do your research. When you do
research by clicking through drop-down menus in GUI programs, your steps
are lost, or at least documenting them requires considerable extra effort. Also
it is generally more difficult to dynamically embed your analysis in presenta-
tion documents created by GUI word processing programs in a way that will
be accessible to other researchers both now and in the future. I'll come back
to these points in Chapter 2.

Why knitr and rmarkdown ?

Literate programming is a crucial part of reproducible quantitative research.'?
Being able to directly link your analyses, your results, and the code you used
to produce the results makes tracing your steps much easier. There are many
different literate programming tools for a number of different programming

101n this book I cover the Bash shell for Linux and Mac as well as Windows PowerShell.

1T know you can write scripts in statistical programs like SPSS, but doing so is not
encouraged by the program’s interface and you often have to learn multiple languages for
writing scripts that run analyses, create graphics, and deal with matrices.

2Donald Knuth coined the term literate programming in the 1970s to refer to a source file
that could be both run by a computer and “woven” with a formatted presentation document
[Knuth, 1992].

12 Reproducible Research with R and RStudio Second Edition

languages.'3 Previously, one of the most common tools for researchers using
R and the LaTeX markup language was Sweave [Leisch, 2002]. The packages I
am going to focus on in this book are newer and have more capabilities. They
are called knitr and rmarkdown. Why are we going to use these tools in this
book and not Sweave or some other tool?

The simple answer is that they are more capable than Sweave. Both knitr
and rmarkdown can work with markup languages other than LaTeX includ-
ing Markdown and HTML. rmarkdown can even output Microsoft Word doc-
uments. They can work with programming languages other than R. They
highlight R code in presentation documents making it easier for your readers
to follow.!* They give you better control over the inclusion of graphics and
can cache code chunks, i.e. save the output for later. knitr has the ability
to understand Sweave-like syntax, so it will be easy to convert backwards to
Sweave if you want to.'® You also have the choice to use much simpler and
more straightforward syntax with knitr and rmarkdown.

knitr and rmarkdown have broadly similar capabilities and syntax. They
both are literate programming tools that can produce presentation documents
from multiple markup languages. They have almost identical syntax when used
in Markdown. Their main difference is that they take different approaches to
creating presentation documents. knitr documents must be written using the
markup language associated with the desired output. For example, with knitr,
LaTeX must be used to create PDF output documents and Markdown or
HTML must be used to create webpages. rmarkdown builds directly on knitr,
the key difference being that it uses the straightforward Markdown markup
language to generate PDF, HTML, and MS Word documents.!%

Because you write with the simple Markdown syntax, rmarkdown is gener-
ally easier to use. It has the advantage of being able to take the same markup
document and output multiple types of presentation documents. Nonetheless,
for complex documents like books and long articles or work that requires cus-
tom formatting, knitr LaTeX is often preferable and extremely flexible, though
the syntax is more complicated.

Why RStudio?

Why use the RStudio integrated development environment for reproducible
research? R by itself has the capabilities necessary to gather data, analyze it,
and, with a little help from knitr/rmarkdown and markup languages, present
results in a way that is highly reproducible. RStudio allows you to do all of

13A very interesting tool that is worth taking a look at for the Python programming
language is HTML Notebooks created with IPython. For more details see http://ipython.
org/ipython-doc/dev/notebook/index.html.

MSyntax highlighting uses different colors and fonts to distinguish different types of text.

15Note that the Sweave-style syntax is not identical to actual Sweave syntax. See Yihui
Xie’s discussion of the differences between the two at: http://yihui.name/knitr/demo/
sweave/. knitr has a function (Sweave2knitr) for converting Sweave to knitr syntax.

16Tt does this by relying on a tool called Pandoc [MacFarlane, 2014].

Introducing Reproducible Research 13

these things, but simplifies many of them and allows you to navigate through
them more easily. It also is a happy medium between R’s text-based interface
and a pure GUL

Not only does RStudio do many of the things that R can do but more easily,
it is also a very good standalone editor for writing documents with LaTeX and
Markdown. For LaTeX documents it can, for example, insert frequently used
commands like \section{} for numbered sections (see Chapter 11).}7 There
are many LaTeX editors available, both open source and paid. But RStudio is
currently the best program for creating reproducible LaTeX and Markdown
documents. It has full syntax highlighting. Its syntax highlighting can even
distinguish between R code and markup commands in the same document. It
can spell check LaTeX and Markdown documents. It handles knitr/rmarkdown
code chunks beautifully (see Chapter 3).

Finally, RStudio not only has tight integration with various markup lan-
guages, it also has capabilities for using other tools such as C++, CSS,
JavaScript, and a few other programming languages. It is closely integrated
with the version control programs Git and SVN. Both of these programs allow
you to keep track of the changes you make to your documents (see Chapter
5). This is important for reproducible research since version control programs
can document many of your research steps. It also has a built-in ability to
make HTML slideshows from knitr / rmarkdown documents. Basically, RStudio
makes it easy to create and navigate through complex reproducible research
documents.

1.5.1 Installing the main software

Before you read this book you should install the main software. All of the
software programs covered in this book are open source and can be easily
downloaded for free. They are available for Windows, Mac, and Linux oper-
ating systems. They should run well on most modern computers.

You should install R before installing RStudio. You can download the
programs from the following websites:

e R:http://www.r-project.org/,
¢ RStudio: http://www.rstudio.com/products/rstudio/download/.

The download webpages for these programs have comprehensive information
on how to install them, so please refer to those pages for more information.

After installing R and RStudio you will probably also want to install a
number of user-written packages that are covered in this book. To install all
of these user-written packages, please see page xix.

I7If you are more comfortable with a what-you-see-is-what-you-get (WYSIWYG) word
processor like Microsoft Word, you might be interested in exploring Lyx. It is a WYSIWYG-
like LaTeX editor that works with knétr. It doesn’t work with the other markup languages
covered in this book. For more information see: http://www.lyx.org/. I give some brief
information on using Lyx with knitr in Chapter 3’s Appendix.

14 Reproducible Research with R and RStudio Second Edition

Installing markup languages

If you are planning to create LaTeX documents you need to install a TeX
distribution.'® They are available for Windows, Mac, and Linux systems. They
can be found at: http://www.latex-project.org/ftp.html. Please refer to
that site for more installation information.

If you want to create Markdown documents you can separately install the
markdown package in R. You can do this the same way that you install any
package in R, with the install.packages command.'?

GNU Make

If you are using a Linux computer you already have GNU Make installed.?’
Mac users will need to install the command-line developer tools. There are two
ways to do this. One is go to the App Store and download Xcode (it’s free).
Once Xcode is installed, install command-line tools, which you will find by
opening Xcode then clicking on Preference — Downloads. However, Xcode
is a very large download and you only need the command-line tools for Make.
To install just the command-line tools, open the Terminal and try to run Make
by typing make and hitting return. A box should appear asking you if you want
to install the command-line developer tools. Click Install. Windows users
will have Make installed if they have already installed Rtools (see page xx).
Mac and Windows users will need to install this software not only so that
GNU Make runs properly, but also so that other command-line tools work
well.

Other Tools

We will discuss other tools such as Git that can be a useful part of a re-
producible research workflow. Installation instructions for these tools will be
discussed below.

1.6 Book Overview

The purpose of this book is to give you the tools that you will need to do
reproducible research with R and RStudio. This book describes a workflow
for reproducible research primarily using R and RStudio. It is designed to give
you the necessary tools to use this workflow for your own research. It is not
designed to be a complete reference for R, RStudio, knitr/rmarkdown, Git, or
any other program that is a part of this workflow. Instead it shows you how

18LaTeX is is really a set of macros for the TeX typesetting system. It is included in all
major TeX distributions.

9The exact command is: install.packages ("markdown").

20Ty verify this, open the Terminal and type: make -version (T used version 3.81 for
this book). This should output details about the current version of Make installed on your
computer.

Introducing Reproducible Research 15

these tools can fit together to make your research more reproducible. To get
the most out of these individual programs I will along the way point you to
other resources that cover these programs in more detail.

To that end, I can recommend a number of resources that cover more of
the nitty-gritty:

e Michael J. Crawley’s [2013] encyclopaedic R book, appropriately titled
The R Book, published by Wiley.

o Hadley Whickham [2014b] has a great new book out from Chapman and
Hall on Advanced R.

¢ Yihui Xie’s [2013] book Dynamic Documents with R and knitr, pub-
lished by Chapman and Hall, provides a comprehensive look at how to
create documents with knitr. It’s a good complement to this book’s gen-
erally more research project—level focus.

e Norman Matloff’s [2011] tour through the programming language aspects
of R called The Art of R Programming: A Tour of Statistical
Design Software, published by No Starch Press.

o Cathy O’Neil and Rachel Schutt [2013] give a great introduction the field
of data science generally in Doing Data Science, published by O’Reilly
Media Inc.

e For an excellent introduction to the command-line in Linux and Mac,
see William E. Shotts Jr’s [2012] book The Linuxz Command-line: A
Complete Introduction also published by No Starch Press. It is also
helpful for Windows users running PowerShell (see Chapter 4).

o The RStudio website (http://www.rstudio.com/ide/docs/) has a num-
ber of useful tutorials on how to use knitr with LaTeX and Mark-
down. They also have very good documentation for rmarkdown at http:
//rmarkdown.rstudio.com/.

That being said, my goal is for this book to be self-sufficient. A reader
without a detailed understanding of these programs will be able to understand
and use the commands and procedures I cover in this book. While learning
how to use R and the other programs I personally often encountered illustra-
tive examples that included commands, variables, and other things that were
not well explained in the texts that I was reading. This caused me to waste
many hours trying to figure out, for example, what the $ is used for (preview:
it’s the component selector, see Section 3.1.2). I hope to save you from this
wasted time by either providing a brief explanation of possibly frustrating and
mysterious things and/or pointing you in the direction of good explanations.

16 Reproducible Research with R and RStudio Second Edition
1.6.1 How to read this book

This book gives you a workflow. It has a beginning, middle, and end. So,
unlike a reference book, it can and should be read linearly as it takes you
through an empirical research processes from an empty folder to a completed
set of documents that reproducibly showcase your findings.

That being said, readers with more experience using tools like R or LaTeX
may want to skip over the nitty-gritty parts of the book that describe how to
manipulate data frames or compile LaTeX documents into PDFs. Please feel
free to skip these sections.

More-experienced R users

If you are an experienced R user you may want to skip over the first section
of Chapter 3: Getting Started with R, RStudio, and knitr/rmarkdown. But
don’t skip over the whole chapter. The latter parts contain important infor-
mation on the knitr/rmarkdown packages. If you are experienced with R data
manipulation you may also want to skip all of Chapter 7.

More-experienced LaTeX users

If you are familiar with LaTeX you might want to skip the first part of Chap-
ter 11. The second part may be useful as it includes information on how to
dynamically create BibTeX bibliographies with knitr and how to include knitr
output in a Beamer slideshow.

Less-experienced LaTeX/Markdown users

If you do not have experience with LaTeX or Markdown you may benefit from
reading, or at least skimming, the introductory chapters on these top topics
(chapters 11 and 13) before reading Part I11.

1.6.2 Reproduce this book

This book practices what it preaches. It can be reproduced. I wrote the
book using the programs and methods that I describe. Full documentation
and source files can be found at the book’s GitHub repository. Feel free to
read and even use (within reason and with attribution, of course) the book’s
source code. You can find it at: https://GitHub.com/christophergandrud/
Rep-Res-Book. This is especially useful if you want to know how to do some-
thing in the book that I don’t directly cover in the text.

If you notice any errors or places where the book can be improved
please report them on the book’s GitHub Issues page: https://GitHub.com/
christophergandrud/Rep-Res-Book/issues. Corrections will be posted at:
http://christophergandrud.GitHub.io/RepResR-RStudio/errata.htm.

Introducing Reproducible Research 17

1.6.3 Contents overview

The book is broken into four parts. The first part (chapters 2, 3, and 4)
gives an overview of the reproducible research workflow as well as the general
computer skills that you’ll need to use this workflow. Each of the next three
parts of the book guides you through the specific skills you will need for each
part of the reproducible research process. Part two (chapters 5, 6, and 7)
covers the data gathering and file storage process. The third part (chapters
8, 9, and 10) teaches you how to dynamically incorporate your statistical
analysis, results figures, and tables into your presentation documents. The final
part (chapters 11, 12, and 13) covers how to create reproducible presentation
documents including LaTeX articles, books, slideshows, and batch reports as
well as Markdown webpages and slideshows.

2

Getting Started with Reproducible Research

Researchers often start thinking about making their work reproducible near
the end of the research process when they write up their results or maybe
even later when a journal requires their data and code be made available for
publication. Or maybe even later when another researcher asks if they can
use the data from a published article to reproduce the findings. By then there
may be numerous versions of the data set and records of the analyses stored
across multiple folders on the researcher’s computers. It can be difficult and
time consuming to sift through these files to create an accurate account of how
the results were reached. Waiting until near the end of the research process
to start thinking about reproducibility can lead to incomplete documentation
that does not give an accurate account of how findings were made. Focusing
on reproducibility from the beginning of the process and continuing to follow
a few simple guidelines throughout your research can help you avoid these
problems. Remember “reproducibility is not an afterthought—it is something
that must be built-into the project from the beginning” [Donoho, 2010, 386].

This chapter first gives you a brief overview of the reproducible research
process: a workflow for reproducible research. Then it covers some of the key
guidelines that can help make your research more reproducible.

2.1 The Big Picture: A Workflow for
Reproducible Research

The three basic stages of a typical computational empirical research project
are:

o data gathering,
o data analysis,

e results presentation.

Each stage is part of the reproducible research workflow covered in this book.
Tools for reproducibly gathering data are covered in Part II. Part III teaches
tools for tying the data we gathered to our statistical analyses and presenting
the results with tables and figures. Part IV discusses how to tie these findings
into a variety of documents you can use to advertise your findings.

19

20 Reproducible Research with R and RStudio Second Edition

Instead of starting to use the individual tools of reproducible research as
soon as you learn them, I recommend briefly stepping back and considering
how the stages of reproducible research tie together overall. This will make
your workflow more coherent from the beginning and save you a lot of back-
tracking later on. Figure 2.1 illustrates the workflow. Notice that most of the
arrows connecting the workflow’s parts point in both directions, indicating
that you should always be thinking about how to make it easier to go back-
wards through your research, i.e. reproduce it, as well as forwards.

Around the edges of the figure are some of the commands you will learn
to make it easier to go forwards and backwards through the process. These
commands tie your research together. For example, you can use API-based R
packages to gather data from the internet. You can use R’s merge command
to combine data gathered from different sources into one data set. The getURL
function from R’s RCurl package [Temple Lang and the CRAN team, 2015]
and the read.table function can be used to bring this data set into your
statistical analyses. The knitr or rmarkdown package then ties your analyses
into your presentation documents. This includes the code you used, the figures
you created, and, with the help of tools such as the kable function in the knitr
package, tables of results. You can even tie multiple presentation documents
together. For example, you can access the same figure for use in a LaTeX
article and a Markdown-created website with the includegraphics and ! [1 ()
commands, respectively. This helps you maintain a consistent presentation of
results across multiple document types. We'll cover these commands in detail
throughout the book. See Table 2.1 for a brief but more complete overview of
the main tie commands.

2.1.1 Reproducible theory

An important part of the research process that I do not discuss in this book
is theoretical stage. Ideally, if you are using a deductive research design, the
bulk of this work will precede and guide the data gathering and analysis
stages. Just because I don’t cover this stage of the research process doesn’t
mean that theory building can’t and shouldn’t be reproducible. It can in fact
be “the easiest part to make reproducible” [Vandewalle et al., 2007, 1254].
Quotes and paraphrases from previous works in the literature obviously need
to be fully cited so that others can verify that they accurately reflect the source
material. For mathematically based theory, clear and complete descriptions of
the proofs should be given.

Though I don’t actively cover theory replication in depth in this book, I
do touch on some of the ways to incorporate proofs and citations into your
presentation documents. These tools are covered in Part IV.

21

Getting Started with Reproducible Research

Seaxen
(()e1qeax)qurad
aTqey
TaIn~esanos
@oInos
UMOPYLDULL

agauy

SUOI)RIUSSAI]
9MsqoM TINLH
/UMOPY IR
i~
O i
ocopueq
sotydeal8epnrout
SpNTOUT
andut
gy
~
SUOI)RIUOSAI]
MOYSopIS
3 ‘OPBIY
‘Yood XoIL®T

sodexoed

paseq-1dV

Tan3es

Tanaes o81ou
oTqe3 PRSI ®Tqe3 "pesl

eqegxoqdoiq eoanos
'lRep 92IN0S

STTF peoTuMOp

el

eqegxoqdoxg” eoInos
'lep 90INO0S

ele mey

sisAfeuy ————————) IoJer) BIR([4 ©IR(MEY

vlR(J MBY

H@QPQWO,H 3] °1], O} spurwIoy) JO UOI}I3[9G B 79 MOYNIOA Qﬁgadxm I HYNOIA

22 Reproducible Research with R and RStudio Second Edition
2.2 Practical Tips for Reproducible Research

Before we start learning the details of the reproducible research workflow with
R and RStudio, it’s useful to cover a few broad tips that will help you organize
your research process and put these skills in perspective. The tips are:

1. Document everything!

2. Everything is a (text) file.

3. All files should be human readable.
4. Explicitly tie your files together.

5

Have a plan to organize, store, and make your files available.

Using these tips will help make your computational research really repro-
ducible.

2.2.1 Document everything!

In order to reproduce your research, others must be able to know what you did.
You have to tell them what you did by documenting as much of your research
process as possible. Ideally, you should tell your readers how you gathered
your data, analyzed it, and presented the results. Documenting everything is
the key to reproducible research and lies behind all of the other tips in this
chapter and tools you will learn throughout the book.

Document your R session info

Before discussing the other tips it’s important to learn a key part of docu-
menting with R. You should record your session info. Many things in R have
stayed the same since it was introduced in the early 1990s. This makes it easy
for future researchers to recreate what was done in the past. However, things
can change from one version of R to another and especially from one version
of an R package to another. Also, the way R functions and how R packages
are handled can vary across different operating systems, so it’s important to
note what system you used. Finally, you may have R set to load packages
by default (see Section 3.1.8 for information about packages). These packages
might be necessary to run your code, but other people might not know what
packages and what versions of the packages were loaded from just looking at
your source code. The sessionInfo command in R prints a record of all of
these things. The information from the session I used to create this book is:

sessionInfo()

Getting Started with Reproducible Research

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#
##
##

R version 3.2.1 (2015-06-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu precise (12.04.1 LTS)

locale:

[1]
[4]
[71
[10]

LC_CTYPE=en_IN
LC_COLLATE=en_IN
LC_PAPER=en_IN
LC_TELEPHONE=C

attached base packages:

[1] stats

other attached packages:

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]

graphics

ZeligBayesian_0.1
Zelig_4.2-1
boot_1.3-17
tidyr_0.2.0
stargazer_5.1
RJSONIO_1.3-0
RCurl_1.95-4.7
TTR_0.22-0
packrat_0.4.4
lazyeval_0.1.10

knitcitations_1.0.6

highlight_0.4.7
formatR_1.2
digest_0.6.8
countrycode_0.18
knitr_1.10.5

LC_NUMERIC=C
LC_MONETARY=en_IN
LC_NAME=C

LC_TIME=en_IN

LC_MESSAGES=en_IN

LC_ADDRESS=C

LC_MEASUREMENT=en_IN LC_IDENTIFICATION=C

grDevices utils

MCMCpack_1.3-
sandwich_2.3-
xtable_1.7-4
texreg_1.35
shiny_0.12.1
rmarkdown_0.7
bitops_1.0-6
xts_0.9-7
openair_1.5
markdown_0.7.7
httr_1.0.0
googleVis_0.5.9
extrafont_0.17
devtools_1.8.0
brew_1.0-6

3
3

loaded via a namespace (and not attached):

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[52]
[55]

nlme_3.1-121
RColorBrewer_1.1-2
R6_2.1.0
colorspace_1.2-6
curl_0.9.1
extrafontdb_1.0
scales_0.2.5
R.utils_2.1.0
highr_ 0.5
Rcpp_0.11.6
RefManageR_0.8.63
plyr_1.8.3
lattice_0.20-31
rjson_0.2.15
XML_3.98-1.3
mapdata_2.2-3

RgoogleMaps_1.2.0.7

gtable_0.1.2
memoise_0.2.1

lubridate_1.3.3
R.cache_0.10.0
DBI_0.3.1
compiler_3.2.1
git2r_0.10.1
xml2_0.1.1
hexbin_1.27.0
htmltools_0.2.6
R.00_1.19.0
munsell_0.4.2
R.methodsS3_1.7.0
grid_3.2.1
splines_3.2.1
codetools_0.2-11
evaluate_0.7
png_0.1-7
Rttf2pt1_1.3.3
assertthat_0.1
rversions_1.0.1

datasets methods

coda_0.17-1
MASS_7.3-42
WDI_2.4
survival_2.38-3
rvest_0.2.0
repmis_0.4.4
quantmod_0.4-4
zoo_1.7-12
maps_2.3-9
magrittr_1.5
htmlwidgets_0.5
ggplot2_1.0.1
dplyr_0.4.2
data.table_1.9.4
animation_2.3

bit64_0.9-5
tools_3.2.1
mgcv_1.8-6
bit_1.1-12
chron_2.3-47
labeling 0.3
stringr_1.0.0
bibtex_0.4.0
Matrix_1.2-1
proto_0.3-10
stringi_0.5-5
parallel_3.2.1
mapproj_1.2-2
reshape2_1.4.1

latticeExtra_0.6-26

httpuv_1.3.2
twitteR_1.1.8
mime_0.3
cluster_2.0.2

base

23

Chapter 4 gives specific details about how to create files with dynamically

24 Reproducible Research with R and RStudio Second Edition

included session information. If you use non-R tools you should also record
what versions of these tools you used.

2.2.2 Everything is a (text) file

Your documentation is stored in files that include data, analysis code, the
write-up of results, and explanations of these files (e.g. data set codebooks,
session info files, and so on). Ideally, you should use the simplest file for-
mat possible to store this information. Usually the simplest file format is the
humble, but versatile, text file.!

Text files are extremely nimble. They can hold your data in, for example,
comma-separated values (.csv) format. They can contain your analysis code
in .R files. And they can be the basis for your presentations as markup doc-
uments like .tex or .md, for LaTeX and Markdown files, respectively. All of
these files can be opened by any program that can read text files.

One reason reproducible research is best stored in text files is that this
helps future-proof your research. Other file formats, like those used by Mi-
crosoft Word (.docx) or Excel (.x1sx), change regularly and may not be
compatible with future versions of these programs. Text files, on the other
hand, can be opened by a very wide range of currently existing programs and,
more likely than not, future ones as well. Even if future researchers do not
have R or a LaTeX distribution, they will still be able to open your text files
and, aided by frequent comments (see below), be able to understand how you
conducted your research [Bowers, 2011, 3].

Text files are also very easy to search and manipulate with a wide range
of programs—such as R and RStudio—that can find and replace text characters
as well as merge and separate files. Finally, text files are easy to version and
changes can be tracked using programs such as Git (see Chapter 5).

2.2.3 All files should be human readable

Treat all of your research files as if someone who has not worked on the
project will, in the future, try to understand them. Computer code is a way
of communicating with the computer. It is ‘machine readable’ in that the
computer is able to use it to understand what you want to do.? However, there
is a very good chance that other people (or you six months in the future) will
not understand what you were telling the computer. So, you need to make
all of your files ‘human readable’. To make them human readable, you should
comment on your code with the goal of communicating its design and purpose
[Wilson et al., 2012]. With this in mind it is a good idea to comment frequently
[Bowers, 2011, 3] and format your code using a style guide [Nagler, 1995]. For

1Plain text files are usually given the file extension .txt. Depending on the size of your
data set it may not be feasible to store it as a text file. Nonetheless, text files can still be
used for analysis code and presentation files.

20f course, if the computer does not understand it will usually give an error message.

Getting Started with Reproducible Research 25

especially important pieces of code you should use literate programming—where
the source code and the presentation text describing its design and purpose
appear in the same document. Doing this will make it very clear to others
how you accomplished a piece of research.

Commenting

In R, everything on a line after a hash character—#—(also known as number,
pound, or sharp) is ignored by R, but is readable to people who open the file.
The hash character is a comment declaration character. You can use the #
to place comments telling other people what you are doing. Here are some
examples:

2+ 2

[1] 4

On the first line the # (hash) is placed at the very beginning, so the entire line
is treated as a comment. On the second line the # is placed after the simple
equation 2 + 2. R runs the equation and finds the answer 4, but it ignores all
of the words after the hash.

Different languages have different comment declaration characters. In La-
TeX everything after the % percent sign is treated as a comment, and in
Markdown/HTML comments are placed inside of <!~ ->. The hash character
is used for comment declaration in command-line shell scripts.

Nagler [1995, 491] gives some advice on when and how to use comments:

o write a comment before a block of code describing what the code does,
e comment on any line of code that is ambiguous.

In this book I follow these guidelines when displaying code. Nagler also sug-
gests that all of your source code files should begin with a comment header.
At the least the header should include:

e a description of what the file does,
o the date it was last updated,
¢ the name of the file’s creator and any contributors.

You may also want to include other information in the header such as what files
it depends on, what output files it produces, what version of the programming
language you are using, sources that may have influenced the code, and how
the code is licensed. Here is an example of a minimal file header for an R
source code file that creates the third figure in an article titled ‘My Article’:

26 Reproducible Research with R and RStudio Second Edition

Feel free to use things like the long series of hash marks above and below the
header, white space, and indentations to make your comments more readable.

Style guides

In natural language writing you don’t necessarily have to follow a style guide.
People could probably figure out what you are trying to say, but it is a lot
easier for your readers if you use consistent rules. The same is true when
writing computer code. It’s good to follow consistent rules for formatting your
code so that it’s easier for you and others to understand.

There are a number of R style guides. Most of them are similar to the
Google R Style Guide.?> Hadley Wickham also has a nicely presented R style
guide.* You may want to use the formatR [Xie, 2015a] package to automati-
cally reformat your code so that it is easier to read.

Literate programming

For particularly important pieces of research code it may be useful to not
only comment on the source file, but also display code in presentation text.
For example, you may want to include key parts of the code you used for
your main statistical models and an explanation of this code in an appendix
following your article. This is commonly referred to as literate programming
[Knuth, 1992].

2.2.4 Explicitly tie your files together

If everything is just a text file, then research projects can be thought of as
individual text files that have a relationship with one another. They are tied
together. A data file is used as input for an analysis file. The results of an
analysis are shown and discussed in a markup file that is used to create a
PDF document. Researchers often do not explicitly document the relationships
between files that they used in their research. For example, the results of
an analysis—a table or figure-may be copied and pasted into a presentation
document. It can be very difficult for future researchers to trace the table or
figure back to a particular statistical model and a particular data set without

3See: http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html.
4You can find it at http://adv-r.had.co.nz/Style.html.

Getting Started with Reproducible Research 27

clear documentation. Therefore, it is important to make the links between
your files explicit.

Tie commands are the most dynamic way to explicitly link your files to-
gether. These commands instruct the computer program you are using to use
information from another file. In Table 2.1 I have compiled a selection of key
tie commands you will learn how to use in this book. We’ll discuss many more,
but these are some of the most important.

2.2.5 Have a plan to organize, store, and make your files avail-
able

Finally, in order for independent researchers to reproduce your work, they
need to be able access the files that instruct them how to do this. Files also
need to be organized so that independent researchers can figure out how they
fit together. So, from the beginning of your research process you should have
a plan for organizing your files and a way to make them accessible.

One rule of thumb for organizing your research in files is to limit the
amount of content any one file has. Files that contain many different opera-
tions can be very difficult to navigate, even if they have detailed comments.
For example, it would be very difficult to find any particular operation in a file
that contained the code used to gather the data, run all of the statistical mod-
els, and create the results figures and tables. If you have a hard time finding
things in a file you created, think of the difficulties independent researchers
will have!

Because we have so many ways to link files together, there is really no
need to lump many different operations into one file. So, we can make our
files modular. One source code file should be used to complete one or just a
few tasks. Breaking your operations into discrete parts will also make it easier
for you and others to find errors [Nagler, 1995, 490].

Chapter 4 discusses file organization in much more detail. Chapter 5
teaches you a number of ways to make your files accessible through the cloud
computing services Dropbox and GitHub.

28 Reproducible Research with R and RStudio Second Edition

TABLE 2.1: A Selection of Commands/Packages/Programs for Tying To-
gether Your Research Files

Command/Package/ Language Description Chapters
Program Discussed
knitr R R package with commands for tying Throughout
analysis code into presentation docu-
ments including those written in LaTeX
and Markdown.
rmarkdown R R package that builds on knitr. It al- Throughout
lows you to use Markdown to output to
HTML, PDFs compiled with LaTeX or
Microsoft Word.
download.file R Downloads a file from the internet. 6
read.table R Reads a table into R. You can use this to 6
import a plain-text file formatted data
into R.
read.csv R Same as read.table with default argu- 6
ments set to import .csv formatted data
files.
source_data R Reads a table stored on the internet into 6
R. You can use it to import a plain-text
formatted data file into R from secure
(https) URLs.
source_DropboxData R Imports a plain-text data file stored in a 6
Dropbox non-Public folder into R.
API-based pack- R Various packages use APIs to gather 6
ages data from the internet.
merge R Merges together data frames. 7
source R Runs an R source code file. 8
source_url R From the devtools package. Runs an R 8
source code file from a secure (https) url
like those used by GitHub.
kable R Creates tables from data frames that can 9
be rendered using Markdown or LaTeX.
toLaTeX R Converts R objects to LaTeX. 2
input LaTeX Includes LaTeX files inside of other La- 12
TeX files.
include LaTeX Similar to input, but puts page breaks 12
on either side of the included text. Usu-
ally it is used for including chapters.
includegraphics LaTeX Inserts a figure into a LaTeX document. 10
o Markdown Inserts a figure into a Markdown docu- 13
ment.
Pandoc shell A shell program for converting files from 12 & 13
one markup language to another. Allows
you to tie presentation documents to-
gether.
Make shell A shell program for automatically build- 6

ing many files at the same time.

3

Getting Started with R, RStudio, and
knitr /rmarkdown

If you have rarely or never used R before, the first section of this chapter
gives you enough information to be able to get started and understand the
R code I use throughout the book. For more detailed introductions on how
to use R please refer to the resources I mentioned in Chapter 1 (Section
1.6). Experienced R users might want to skip the first section. In the second
section I'll give a brief overview of RStudio. I highlight the key features of
the main RStudio panel (what appears when you open RStudio) and some of
its key features for reproducible research. Finally, I discuss the basics of the
knigtr / rmarkdown packages, how to use them in R, and how they are integrated
into RStudio.

3.1 Using R: The Basics

To get you started with reproducible research, we’ll cover some very basic R
syntax—the rules for talking to R. I cover key parts of the R language including;:

e objects & assignment,

e component selection,

o functions and commands,
e arguments,

¢ the workspace and history,
o packages.

Before discussing each of these in detail, let’s open R and look around.!
When you open the R GUI program by clicking on the R icon you should get a
window that looks something like Figure 3.1.2 This window is the R console.
Below the startup information—information about what version of R you are
using, license details, and so on—you should see a > (greater-than sign). This

1Please see Chapter 1 for instructions on how to install R.
2This figure and almost all screenshots in this book were taken on a computer using the
Mac OS 10.10 operating system.

29

30 Reproducible Research with R and RStudio Second Edition

prompt is where you enter R code.? To run R code that you have typed after
the prompt, hit the Enter or Return key. Now that we have a new R session
open we can get started.

FIGURE 3.1: R Startup Console

®00 R Console 'y

@RulGEO " 1o o)

Q- Help Search

R version 3.0.0 (2013-84-83) -- "Masked Marvel"
Copyright (C) 2813 The R Foundation for Statistical Computing
Platform: xB6_64-apple-darwinl@.B.8 (B4-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type '"license()' or 'licence()' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors{)}' for more information and
"citation{)' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help(}' for on-line help, or
"help.start(}' for an HTML browser interface to help.

| Type 'a()' to quit R.

‘[R.app GUI 1.60 (6476) x86_6d-apple-darwinl®.&.0]

|

3.1.1 Objects

If you’ve read a description of R before, you will probably have seen it referred
to as an ‘object-oriented language’. What are objects? Objects are like the
R language’s nouns. They are things, like a vector of numbers, a data set,
a word, a table of results from some analysis, and so on. Saying that R is
object-oriented means that R is focused on doing actions to objects. We will
talk about the actions-commands and functions-later in this section.* Now
let’s create a few objects.

31f you are using a Unix-like system such as Linux Ubuntu or Mac OS 10, you can also
access R via an application called the Terminal. If you have installed R on your computer
you can type R into the Terminal and then the Enter or Return key. This will begin a new
R session. You will know you are in a new R session because the same type of startup
information as in Figure 3.1 will be printed in your Terminal.

4Somewhat confusingly, commands and functions are themselves objects. In this chapter
I treat them as distinct from other object types to avoid confusion.

Getting Started with R, RStudio, and knitr /rmarkdown 31

Numeric & string objects

Objects can have a number of different types. Let’s make two simple objects.
The first is a numeric-type object. The other is a character object. We can
choose almost any name we want for our objects as long as it begins with
an alphabetic character and does not contain spaces.® Let’s call our numeric
object Number. It is a good idea to give each object a unique name to avoid
conflicts and confusion. Also make sure that object names are different from
the names of their components, e.g. individual variable names. This will avoid
many complications like accidentally overwriting an object or confusing R
about what object or component you are referring to.

To put something into the object we use the assignment operator® (<-).
Let’s assign the number 10 to our Number object.

Number <- 10

To see the contents of our object, type its name.

Number

[1] 10

Let’s briefly breakdown this output. 10 is clearly the contents of Number. The
double hash (##) is included here to tell you that this is output rather than
R code.” If you type the commands in your R console, you will not get the
double hash in your output. Finally, [1] is the row number of the object that
10 is on. Clearly our object only has one row.

Creating an object with words and other characters—a character object—
is very similar. The only difference is that you enclose the character string
(letters in a word for example) inside of single or double quotation marks ("',
or "").8 To create an object called Words that contains the character string
“Hello World”:

51t is common for people to use either periods (.) or capital letters (referred to as Camel-
Back) to separate words in object names instead of using spaces. For example: new.data or
NewData rather than new data. For more information on R naming conventions see Baath
[2012].

6The assignment operator is sometimes also referred to as the ‘gets arrow’.

"The double hash is generated automatically by knitr. They make it easier to copy and
paste code into R from a document created by knitr because R will ignore everything after
a hash.

8Single and double quotation marks are interchangeable in R for this purpose. In this
book I always use double quotes, except for knitr code chunk options.

32 Reproducible Research with R and RStudio Second Edition

Words <- "Hello World"

An object’s type is important to keep in mind as it determines what we
can do to it. For example, you cannot take the mean of a character object like
the Words object:

mean (Words)

Warning in mean.default(Words): argument is not numeric or logical:
returning NA

[1] NA

Trying to find the mean of our Words object gives us a warning message
and returns the value NA: not applicable. You can also think of NA as meaning
“missing”. To find out an object’s type, use the class command. For example:

class(Words)

[1] "character"

Vector & data frame objects

So far we have only looked at objects with a single number or character string.”
Clearly we often want to use objects that have many strings and numbers. In
R these are usually data frame-type objects and are roughly equivalent to
the data structures you would be familiar with from using a program such
as Microsoft Excel. We will be using data frames extensively throughout the
book. Before looking at data frames it is useful to first look at the simpler
objects that make up data frames. These are called vectors. Vectors are R’s
“workhorse” [Matloff, 2011]. Knowing how to use vectors will be especially
helpful when you cleanup raw data in Chapter 7 and make tables in Chapter
9.10

9These might be called scalar objects, though in R scalars are just vectors with a length
of 1.

10If you want information about other types of R objects such as lists and matrices,
Chapter 1 of Norman Matloff’s [2011] book is a really good place to look.

Getting Started with R, RStudio, and knitr /rmarkdown 33

Vectors

Vectors are the “fundamental data type” in R [Matloff, 2011]. They are simply
an ordered group of numbers, character strings, and so on.!! It may be useful
to think of basically all R objects as composed of vectors. For example, data
frames are basically multiple vectors of the same length—i.e. they have the
same number of rows—attached together to form columns.

Let’s create a simple numeric vector containing the numbers 2.8, 2, and
14.8. To do this we will use the ¢ (combine) function:

NumericVect <- c(2.8, 2, 14.8)

NumericVect

[1] 2.8 2.0 14.8

Vectors of character strings are created in a similar way. The only major
difference is that each character string is enclosed in quotation marks like this:

CharacterVect <- c("Albania", "Botswana", "Cambodia")

CharacterVect

[1] "Albania" "Botswana" "Cambodia"

To give you a preview of what we are going to do when we start working
with real data sets, let’s combine the two vectors NumericVect and Charac-
terVect into a new object with the cbind function. This function binds the
two vectors together side-by-side as columns.'?

StringNumObject <- cbind(CharacterVect, NumericVect)

1n a vector, every member of the group must be of the same type. If you want an ordered
group of values with different types you can use lists.

121f you want to combine objects as if they were rows of the same column(s), use the
rbind function.

34 Reproducible Research with R and RStudio Second Edition

StringNumObject

CharacterVect NumericVect
[1,] "Albania" "2.8"

[2,] "Botswana" "

[3,] "Cambodia" "14.8"

By binding these two objects together we’ve created a new matrix object.!?
You can see that the numbers in the NumericVect column are between quo-
tation marks. Matrices, like vectors, can only have one data type.

Data frames

If we want to have an object with rows and columns and allow the columns
to contain data with different types, we need to use data frames. Let’s use
the data.frame command to combine the NumericVect and CharacterVect
objects.

StringNumObject <- data.frame(CharacterVect, NumericVect)

StringNumObject

CharacterVect NumericVect

#it 1 Albania 2.8
##t 2 Botswana 2.0
3 Cambodia 14.8

There are a few important things to notice in this output. The first is that
because we used the same name for the data frame object as the previous
matrix object, R deleted the matrix object and replaced it with the data
frame. This is something to keep in mind when you are creating new objects.
In general it is a better idea to assign elements to new objects rather than
overwriting old ones. This will help avoid accidentally using an object you
had not intended to. It also allows you to more easily change previously run
source code.

13Matrices are vectors with columns as well as rows.

Getting Started with R, RStudio, and knitr /rmarkdown 35

You can see the data frame’s names attribute.!® It is the column names.

You can use the names command to see any data frame’s names:'®

names (StringNumObject)

[1] "CharacterVect" "NumericVect"

You will also notice that the first column of the data set has no name
and is a series of numbers. This is the row.names attribute. Data frame rows
can be given any name as long as each row name is unique. We can use the
row.names command to set the row names from a vector. For example,

row.names (StringNumObject) <- c("First", "Second", "Third")

row.names (StringNumObject)

[1] "First" "Second" "Third"

You can see in this example how the row.names command can also be used
to print the row names.'® The row.names attribute does not behave like a
regular data frame column. You cannot, for example, include it as a variable
in a regression. You can use the row.names command to assign the row.names
values to a regular column (for an example see Section 10.4.1).

You will notice in the output for StringNumObject that the strings in the
CharacterVect column are no longer in quotation marks. This does not mean
that they are somehow now numeric data. To prove this, try to find the mean
of CharacterVect by running it through the mean command:

mean (StringNumObject$ChacterVect)

Warning in mean.default(StringNumObject$ChacterVect): argument
is not numeric or logical: returning NA

[1] NA

M Matrices can also have a names attribute.

5You can also use names to assign names for the entire data frame. For example,
names (StringNumObject) <- c("Variablel", "Variable2")

16Note that this is really only useful for data frames with few rows.

36 Reproducible Research with R and RStudio Second Edition

3.1.2 Component selection

The last bit of code we just saw will probably be confusing. Why do we have
a dollar sign ($) between the name of our data frame object name and the
CharacterVect variable? The dollar sign is called the component selector.!”
It basically extracts a part—component—of an object. In the previous example
it extracted the CharacterVect column from the StringNumObject and fed
it to the mean command, which tried (in this case unsuccessfully) to find its
mean.

We can Of course, use the component selector to create new objects with
parts of other objects. Imagine that we have the StringNumObject and want
an object with only the information in the numbers column. Let’s use the
following code:

NewNumeric <- StringNumObject$NumericVect

NewNumeric

[1] 2.8 2.0 14.8

Knowing how to use the component selector will be especially useful when we
discuss making tables for presentation documents in Chapter 9.

attach and with

Using the component selector can create long repetitive code if you want to
select many components. You have to write the object name, a dollar sign,
and the component name every time you want to select a component. You can
streamline your code by using commands such as attach and with.

The attach command attaches a database to R’s search path.'® R will
then search the database for variables you specify. You don’t need to use the
component selector to tell R again to look in a particular data frame after you
have attached it. For example, let’s attach the cars data that comes with R.
It has two variables, speed and dist.!?

17It’s also sometimes called the element name operator.

18You can see what is in your current search path with the search command. Just type
search() into your R console.

19For more information on this data set, type ?cars into your R console.

Getting Started with R, RStudio, and knitr /rmarkdown 37

attach(cars)

head(speed)

[11 447789

head(dist)

[1] 2 10 4 22 16 10

detach(cars)

We used the head command to see just the first few values of each variable.
It is a good idea to detach a data frame after you are done using it, to avoid
confusing R.

Similarly, you can use with when you run commands using a particular
database (see Section 3.1.4 for more details about commands). For example,
we can find the mean of NumericVect with the StringNumObject data frame:

with(StringNumObject, {
mean (NumericVect)
}

)

[1] 6.533333

You can see that in the with command the data frame object goes first and
then the mean command®® goes second in curly brackets ({3}).

For examples in this book I largely avoid using the attach and with
commands. I mostly use the component selector. Though it creates longer
code, I find that code written with the component selector is easier to follow.
It’s always clear which object we are selecting a component from. Nonetheless,
attach and with are very useful for streamlining your R code.

20Using R terminology, the second “argument” value-the code after the comma-—of the
with command is called an “expression”, because it can contain more than one R com-
mand or statement. See Section 3.1.5 for a more comprehensive discussion of R command
arguments.

38 Reproducible Research with R and RStudio Second Edition

3.1.3 Subscripts

Another way to select parts of an object is to use subscripts. You have already
seen subscripts in the output from our examples so far. They are denoted with
square braces ([]). We can use subscripts to select not only columns from data
frames but also rows and individual values. As we began to see in some of the
previous output, each part of a data frame has an address captured by its row
and column number. We can tell R to find a part of an object by putting the
row number /name, column number/name, or both in square braces. The first
part denotes the rows and separated by a comma (,) are the columns.

To give you an idea of how this works let’s use the cars data set that comes
with R. Use the head command to get a sense of what this data set looks like.

head(cars)

#Hi#t speed dist

1 4 2
2 4 10
3 7 4
4 7 22
5 8 16
6 9 10

We can see a data frame with information on various cars’ speeds (speed) and
stopping distances (dist). If we want to select only the third through seventh
rows we can use the following subscript commands:

cars[3:7,]

#Hit speed dist

3 7 4
4 7 22
5 8 16
6 9 10
7 10 18

The colon (:) creates a sequence of whole numbers from 3 to 7. To select the
fourth row of the dist column we can type:

Getting Started with R, RStudio, and knitr /rmarkdown 39

cars[4, 2]

[11 22

An equivalent way to do this is:

cars[4, "dist"]

[1] 22

Finally, we can even include a vector of column names to select:

cars[4, c("speed", "dist")]

#Hit speed dist
4 T 22

3.1.4 Functions and commands

If objects are the nouns of the R language, functions and commands?! are the
verbs. They do things to objects. Let’s use the mean command as an example.
This command takes the mean of a numeric vector object. Remember our
NumericVect object from before:

NumericVect

[1] 2.8 2.0 14.8

To find the mean of this object simply type:

21For the purposes of this book I treat the two as the same.

40 Reproducible Research with R and RStudio Second Edition

mean(x = NumericVect)

[1] 6.533333

We use the assignment operator to place a command’s output into an object.
For example:

MeanNumericVect <- mean(x = NumericVect)

Notice that we typed the command’s name then enclosed the object name in
parentheses immediately afterwards. This is the basic syntax that all com-
mands use, i.e. COMMAND (ARGUMENTS) . If you don’t want to explicitly include
an argument you still need to type the parentheses after the command.

3.1.5 Arguments

Arguments modify what commands do. In our most recent example we
gave the mean command one argument (x = NumericVect) telling it that we
wanted to find the mean of NumericVect. Arguments use the ARGUMENTLABEL
= VALUE syntax.?? In this case x is the argument label.

To find all of the arguments that a command can accept, look at the
Arguments section of the command’s help file. To access the help file type:
7?COMMAND. For example,

?mean

The help file will also tell you the default values that the arguments are set
to. Clearly, you do not need to explicitly set an argument if you want to use
its default value.

You do have to be fairly precise with the syntax for your argument’s values.
Values for logical arguments must written as TRUE or FALSE.?3 Arguments that
accept character strings require quotation marks.

Let’s see how to use multiple arguments with the round command. This
command rounds a vector of numbers. We can use the digits argument to

22Note: you do not have to put spaces between the argument label and the equals sign or
the equals sign and the value. However, having spaces can make your code easier for other
people to read.

23They can be abbreviated T and F.

Getting Started with R, RStudio, and knitr /rmarkdown 41

specify how many decimal places we want the numbers rounded to. To round
the object MeanNumericVect to one decimal place type:

round(x = MeanNumericVect, digits = 1)

[1] 6.5

Note that arguments are separated by commas.

Some arguments do not need to be explicitly labeled. For example, we
could have written:

mean (NumericVect)

[1] 6.533333

R will do its best to figure out what you want and will only give up when
it can’t. This will generate an error message. However, to avoid any misun-
derstandings between yourself and R it can be good practice to label most of
your arguments. This will also make your code easier for other people to read,
i.e. it will be more reproducible.

You can stack arguments inside of other arguments. To have R find the
mean of NumericVect and round it to one decimal place use:

round (mean (NumericVect), digits = 1)

[1] 6.5

Stacking functions inside of each other can create code that is difficult to
read. Another option that potentially makes more easily understandable code
is piping using the pipe function (%>%) that you can access from the magrittr
package [Bache and Wickham, 2014]. The basic idea behind the pipe function
is that the output of one function is set as the first argument of the next. For
example, to find the mean of NumericVect and then round it to one decimal
place use:

42

Reproducible Research with R and RStudio Second Edition

Load magrittr package
library(magrittr)

Find mean of NumericVect and round to 1 decimal place
mean (NumericVect) %>% round(digits = 1)

[1] 6.5

3.1.6 The workspace & history

All of the objects you create become part of your workspace, alternatively
known as the current working environment. Use the 1s command to list all of

the objects in your current workspace.

1sQ

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

[1]

[4]

[7]
[10]
[13]
[16]
[19]
[22]
[25]
[28]
[31]
[34]
[37]
[40]
[43]
[46]
[49]
[52]
[55]
[58]

"CatPlot"
"DataDuplicates"
"Description"
"DescriptTable"
"doInstall"
"FCLabels"
"FertOutliers"
"FinRegulatorData"
"GatheredFertSub"
"InflationUrl"
IlMlll

I|M4ll
"MergedDatal"
"NBModel2"
"NBSum2DF"
"NewNumeric"
"01dUrlAddress"
"temp"

"URL"

"Words"

24

"CharacterVect"
"DataNotDuplicates"
"DescriptionsBound"
"DispropData"
"Drawl"
"FertConsumpData"
"FinalCleanedData"
"FinURL"
"GatheredInflation"
"kable_ex"

IIM2II

IIM5II

"MergedData2"
"NBModel2Sum"
"NBSumDataFrame"
"Number"
"SpreadFert"
"toInstall"
"UrlAddress"

"cust_coef"
"DataUrl"
"DescriptionsTable"
"Disprop01d"
"Draw2"
"FertFactor"
"FinDataFull"
"GatheredFert"
"InflationData"
"LinePlot"

IIMBII
"MeanNumericVect"
"NBModel"
"NBModelSum"
"NBTable"
"NumericVect"
"StringNumObject"
"UDSData"
"Variable"

You can remove specific objects from the workspace using the rm command.

For example, to remove the CharacterVect and Words objects type:

24Note: your workspace will probably include different objects than this example. These
are objects created to knit the book.

Getting Started with R, RStudio, and knitr /rmarkdown 43

rm(CharacterVect, Words)

To save the entire workspace into a binary-not plain-text-RData file use
the save.image command. The main argument of save.image is the location
and name of the file in which you want to save the workspace. If you don’t
specify the file path it will be saved into your current working directory (see
Chapter 4 for information on files paths and working directories). For example,
to save the current workspace in a file called December Workspace. RData in
the current working directory type:

save.image(file = "DecemberWorkspace.RData")

Use the load command to load a saved workspace back into R:

load(file = "DecemberWorkspace.RData")

You should generally avoid having R automatically save your workspace
when you quit and reload it when you start R again. Instead, when you return
to working on a project, rerun the source code files. This avoids any complica-
tions caused when you use an object in your workspace that is left over from
running an older version of the source code.?’ In general I also recommend
against saving data in binary RData formatted files. Because they are not text
files they are not human readable and are much less future-proof.

One of the few times when saving your workspace is very useful is when
it includes an object that was computationally difficult and took a long time
to create. In this case you can save only the large object with the save com-
mand.?% For example, if we have a very large object called Comp we can save
it to a file called Comp.RData like this:

save(Comp, file = "Comp.RData")

25For example, imagine you create an object, then change the source code you used to
create the object. However, there is a syntax error in the new version of the source code.
The old object won’t be overwritten and you will be mistakenly using the old object in
future commands.

26The save.image command is just a special case of save.

44 Reproducible Research with R and RStudio Second Edition

R history

When you enter a command into R it becomes part of your history. To see
the most recent commands in your history use the history command. You
can also use the up and down arrows on your keyboard when your cursor is
in the R console to scroll through your history.

3.1.7 Global R options

In R you can set global options with the options command. This lets you set
how R runs and outputs commands through an entire R session. For example,
to have output rounded to one decimal place, set the digits argument:

options(digits = 1)

3.1.8 Installing new packages and loading functions

Commands are stored in R packages. The commands we have used so far were
loaded automatically by default. One of the great things about R is the many
user-created packages?” that greatly expand the number of commands we can
use. To install commands that do not come with the basic R installation
you need to install the add-on packages that contain them. To do this, use
the install.packages command. By default this command downloads and
installs the packages from the Comprehensive R Archive Network (CRAN).

For the code you need to install all of the packages used in this book, see
page xix. When you install a package, you will likely be given a list of mirrors
from which you can download the package. Simply select the mirror closest
to you.

Once you have installed a package you need to load it so that you can use
its functions. Use the 1ibrary command to load a package.?® Use the following
code to load the ggplot2 package that we use in Chapter 10 to create figures.

2"For the latest list see: http://cran.r-project.org/web/packages/available_
packages_by_name.html.

28You will probably see R packages referred to as “libraries”, though this
is a misnomer. See this blog post by Carlisle Rainey for a discussion: http:
//www.carlislerainey.com/2013/01/02/packages-v-1libraries-in-r/7utm_source=
rss&utm_medium=rssfutm_campaign=packages-v-libraries-in-r (posted 2 January
2013).

Getting Started with R, RStudio, and knitr /rmarkdown 45

library(ggplot2)

Please note that for the examples in this book I only specify what package a
command is from if it is not loaded by default when you start an R session.

Finally, if you want to make sure R uses a command from a specific package
you can use the double-colon operator (::). For example, to make sure that
we use the gplot function from the ggplot2 package we type:

ggplot2::qplot(. . .)

We can use the double-colon to simplify our code as we don’t need to include
library(. . .). Using the double-colon in this way ensures that R will use
the command from the particular package you want and makes it clear to a
source code reader what package a command comes from. Note that it does
not load all of the functions in the package, just the one you ask for.

3.2 Using RStudio

As I mentioned in Chapter 1, RStudio is an integrated development environ-
ment for R. It provides a centralized and well-organized place to do almost
anything you want to do with R. As we will see later in this chapter, it is
especially well integrated with literate programming tools for reproducible
research. Right now let’s take a quick tour of the basic RStudio window.

The default window

When you first open RStudio you should see a default window that looks like
Figure 3.2. In this figure you see three window panes. The large one on the
left is the Console. This pane functions exactly the same as the console in
regular R. Other panes include the Environment/History panes, in the upper
right-hand corner. The Environment pane shows you all of the objects in your
workspace and some of their characteristics, like how many observations a
data frame has. You can click on an object in this pane to see its contents.
This is especially useful for quickly looking at a data set in much the same
way that you can visually scan a Microsoft Excel spreadsheet. The History
pane records all of the commands you have run. It also allows you to rerun
code and insert it into a source code file.

In the lower right-hand corner you will see the Files/Plots/Packages/
Help/Viewer panes. We will discuss the Files pane in more detail in Chap-
ter 4. Basically, it allows you to see and organize your files. The Plots pane

46 Reproducible Research with R and RStudio Second Edition
FIGURE 3.2: RStudio Startup Panel

(XX} RStudio
Pl - &) Project: (None) +
Console (5| Environment History -0
& @ | 2 impont Dataset~ | of st
R version 3.1.2 (2014-10-31) -- “Pumpkin Helmet' & Global Environment
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwinl4.1.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY. Emironment is empty
You are welcome to redistribute it under certain conditions.
Type "license()' or 'licence()' for distribution details.
Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type "contributors()* for more information and
“citation()’ on how to cite R or R packages in publications.
Type ‘deno()’ for some demos, ‘help()’ for on-line help, or
“help.start()" for an HTML browser interface to help.
Type 'q0)" to quit R
Files Plots Packages Help Viewer =0
SN RN
Home -
R R Resources @ Rrstudio
Learning R Online RStudio IDE Support
CRAN Task Views RStudio Tip of the Day
R on StackOverflow RStudio Packages
Getting Help with R RStudio Products
Manuals
An Introduction to R The R Language Definition
Writing R Extensions R Installation and Administration
R Data Import/Export R Internals
Reference
Packages Search Engine & Keywords

Miscellaneous Material

About R Authors Resources
License FAQ Thanks
NEWS User Manuals Technical papers

is where figures you create in R appear. This pane allows you to see all of
the figures you have created in a session using the right and left arrow icons.
It also lets you save the figures in a variety of formats. The Packages pane
shows the packages you have installed, allows you to load individual packages
by clicking on the dialog box next to them, access their help files (just click
on the package name), update the packages, and even install new packages.
The Help pane shows you help files. You can search for help files and search
within help files using this pane. Finally, the Viewer pane allows you to view
local web content like JavaScript graphics and Shiny web apps.

The Source pane

There is an important pane that does not show up when you open RStudio for
the first time. This is the Source pane. The Source pane is where you create,
edit, and run your source code files. It also functions as an editor for your
markup files. It is the center of reproducible research in RStudio.

Let’s first look at how to use the Source pane with regular R files. We
will then cover how it works with knitr/rmarkdown in more detail in the next
section.

R source code files have the file extension .R. When you create a new source

Getting Started with R, RStudio, and knitr /rmarkdown 47

code document, RStudio will open a new Source pane. Do this by going to
the menu bar and clicking on File — New. In the New drop-down menu you
have the option to create a variety of different source code documents. Select
the R Script option. You should now see a new pane with a bar across the
top that looks like the first image in Figure 3.3. To run the R code you have
in your source code file simply highlight it?? and click the Run icon (=*Run)
on the top bar. This sends the code to the console where it is run. The icon
to the right of Run simply runs the code above where you have highlighted.
The Source icon next to this runs all of the code in the file using R’s source
command.

FIGURE 3.3: RStudio Source Code Pane Top Bars

(a) R Markdown
Files

(b) R LaTeX Files

3.3 Using knitr and rmarkdown: The Basics

To get started with knitr and rmarkdown in R or RStudio we need to learn
some of the basic concepts and syntax. The concepts are the same regardless
of the markup language we are knitting R code with, but much of the syntax
varies by markup language. rmarkdown relies on knitr and a utility called Pan-
doc to create many different types of presentation documents (HTML, PDF,
or MS Word) from one document written largely using knitr’s R Markdown
syntax.

3.3.1 What knitr does

Let’s take a quick, abstract look at what the knitr package does. As I've
mentioned, knitr ties together your presentation of results with the creation
of those results. The knitr process takes three steps (see Figure 3.4). First we
create a knittable markup document. This contains both the analysis code and
the presentation document’s markup—the text and rules for how to format the
text. knitr then knits: i.e. it runs the analysis code and converts the output

291f you are only running one line of code, you don’t need to highlight the code; you can
simply put your cursor on that line.

48 Reproducible Research with R and RStudio Second Edition

FIGURE 3.4: The knitr/rmarkdown Process

Knit Compile
Knittable
Document o '
(Markup —_— Markup Only ; Presentation
Document Document
+ Code
Chunks)

knitr LaTeX Example

Paper. Rnw ——> Paper.tex —— Paper.pdf

knitr /rmarkdown Markdown Example

Website. Rmd —> Website.md —> Website.html

into the markup language you are using according to the rules that you tell
it to use. It inserts the marked-up results into a document that only contains
markup for the presentation document. You compile this markup document as
you would if you hadn’t used knitr into your final PDF document or webpage
presenting your results.

3.3.2 What rmarkdown does

The rmarkdown package implements a variation on this process that utilizes a
program called Pandoc to create presentation documents in multiple formats
from an a knittable document written in Markdown. The main difference
between pure knitr markdown and rmarkdown documents is the inclusion of
a header specifying how you want to render the document with Pandoc.3°
The header is written in YAML.3! The YAML header can include infor-
mation such as the document’s title, author, whether or not to include a table
of contents, and a link to a BibTeX bibliography file. YAML is a straight-
forward data format that organizes information in a simple hierarchy. The

30Note: you can also create an rmarkdown document without a header.
31YAML is a recursive acronym that means “YAML Ain’t Markup Language”.

Getting Started with R, RStudio, and knitr /rmarkdown 49

header begins and ends with three dashes (---). Information keys-like “title”
and “author”-are separated from their associated “values” by a colon (:). Sub-
values of a hierarchy are denoted by being placed on a new line and indented.3?
Here is a basic rmarkdown header that indicates the document’s title, author,
date, and that it will be turned into a PDF document (via LaTeX).

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "30 November 2015"
output: pdf_document:
toc: true

The title, author, and date, will be placed at the beginning of the output
document. The final line (toc: true) creates a table of contents near the
beginning of the PDF document when we knit it. We will discuss more header
options in Chapter 13.

RStudio can automatically create a basic header for the type of output
document that you want when you open a new rmarkdown file. Simply select
File — New File - R Markdown.... A window will appear that looks like
Figure 3.5. Simply select the type of output document you want to create and
click Ok.

In addition to the header, rmarkdown differs from knitr in that you can
include Pandoc syntax in your R Markdown document. This can be useful for
bibliographies as we will discuss in Chapter 13. Nonetheless, remember that
apart from the header and ability to include Pandoc syntax, at the simplest
level rmarkdown documents are knitr documents written in R Markdown syn-
tax. Importantly, they have the same code chunk syntax we will see shortly.

3.3.3 File extensions

When you save a knittable file, use a file extension that indicates (a) that it is
knittable and (b) what markup language it is using. You can use a number of
file extensions for R Markdown files including: .Rmd and .Rmarkdown.?? LaTeX
documents that include knitr code chunks are generally called R Sweave files
and have the file extension .Rnw. This terminology is a little confusing. It is
a holdover from knitr’s main literate programming predecessor Sweave. You

321t doesn’t matter how many spaces you use to indent, as long as all indentations have
the same number of spaces.

33R, Markdown files that you compile with knitr or rmarkdown have the same .Rmd file
extension.

50 Reproducible Research with R and RStudio Second Edition

FIGURE 3.5: The New R Markdown Options Window

New R Markdown

| Document Title: Untitled

CJ Presentation Author:

f&) Shiny Default Output Format:
|= From Template © HTML

Recommended format for authoring (you can switch to
PDF or Word output anytime).

PDF
PDF output requires TeX (MiKTeX on Windows, MacTeX
2013+ on OS X, TeX Live 2013+ on Linux).

Word

Previewing Word documents requires an installation of
MS Word (or Libre/Open Office on Linux).

OK Cancel

can also use the less confusing file extension .Rtex, as regular LaTeX files
have the extension .tex. However, the syntax for .Rtex files is different from
that used with .Rnw files. We'll look at this issue in more detail below.

3.3.4 Code chunks

When you want to include R code into your markup presentation documents,
place them in a code chunk. Code chunk syntax differs depending on the
markup language we are using to write our documents. Let’s see the syntax
for R Markdown and R LaTeX files. If you are unfamiliar with basic LaTeX or
Markdown syntax you might want to skim chapters 11 and 13 to familiarize
yourself with it before reading this section.

R Markdown

In R Markdown files we begin a code chunk by writing the head: ~~~{r}. A
code chunk is closed—ended—simply with: ~~~. For example:

T {r}

Getting Started with R, RStudio, and knitr /rmarkdown 51

StringNumObject <- cbind(CharacterVect, NumericVect)

The R Markdown code chunk syntax is exactly the same for files you compile
with knitr or rmarkdown.

R LaTeX

There are two different ways to delimit code chunks in R LaTeX documents.
One way largely emulates the established Sweave syntax.3* knitr also supports
files with the .Rtex extension, though the code chunk syntax is different. I will
cover both types of syntax for code chunks in LaTeX documents. Throughout
the book I use the older and more established Sweave-style syntax.

Sweave-style

Traditional Sweave-style code chunks begin with the following head: «»=.
The code chunk is closed with an at sign (@).

L »>=

StringNumObject <- cbind(CharacterVect, NumericVect)
c]

Rtex-style

Sweave-style code chunk syntax is fairly baroque compared to the Rtex-
style syntax. To begin a code chunk in an Rtex file simply type double percent
signs followed by begin.rcode, i.e. %% begin.rcode. To close the chunk you
use double percent signs: %%. Each line in the code chunk needs to begin with
a single percent sign. For example:

34The syntax has its genesis in a literate programming tool called noweb [Leisch, 2002,
Ramsey, 2011].

52 Reproducible Research with R and RStudio Second Edition

%% begin.rcode

% # Example of a Rtex-style code chunk

% StringNumObject <- cbind(CharacterVect, NumericVect)
hto

Code chunk labels

Each chunk has a label. When a code chunk creates a plot or the output
is cached-stored for future use—knitr uses the chunk label for the new file’s
name. If you do not explicitly give the chunk a label it will be assigned one
like: unnamed-chunk-1.

To explicitly assign chunk labels in R Markdown documents, place the
label name inside of the braces after the r. If we wanted to use the label
ChunkLabel we type:

> {r ChunkLabel}

The same general format applies to the two types of LaTeX chunks. In Sweave-
style chunks we type: «ChunkLabel»=. In Rtex-style we use: %% begin.rcode
ChunkLabel. Try not to use spaces or periods in your label names. Also re-
member that chunk labels must be unique.

Code chunk options

There are many times when we want to change how our code chunks are
knitted and presented. Maybe we only want to show the code and not the
results or perhaps we don’t want to show the code at all but just a figure
that it produces. Maybe we want the figure to be formatted on a page in
a certain way. To make these changes and many others we can specify code
chunk options.

Like chunk labels, you specify options in the chunk head. Place them after
the chunk label, separated by a comma. Chunk options are written following
pretty much the same rules as regular R command arguments. They have a
similar OPTION_LABEL=VALUE structure as arguments. The option values must
be written in the same way that argument values are. Character strings need to
be inside of quotation marks. The logical TRUE and FALSE operators cannot be
written ' 'true'' and ''false''. For example, imagine we have a Markdown

Getting Started with R, RStudio, and knitr /rmarkdown 53

code chunk called ChunkLabel. If we want to run the knitr code chunk, but
not show the code in the final presentation document, we can use the option
echo=FALSE.

**"{r ChunkLabel, echo=FALSE}
StringNumObject <- cbind(CharacterVect, NumericVect)

Note that all labels and code chunk options must be on the same line. Options
are separated by commas. The syntax for knitr options is the same regardless
of the markup language. Here is the same chunk option in Rtex-style syntax:

%% begin.rcode ChunkLabel, echo=FALSE
% StringNumObject <- cbind(CharacterVect, NumericVect)
he

Throughout this book we will look at a number of different code chunk
options. Many of the chunk options we will use in this book are listed in Table
3.1. For the full list of knitr options see the knitr chunk options page main-
tained by knitr’s creator Yihui Xie: http://yihui.name/knitr/options.

3.3.5 Global chunk options

So far we have only looked at how to set local options in knitr code chunks, i.e.
options for only one specific chunk. If we want an option to apply to all of the
chunks in our document we can set global chunk options. Options are ‘global’
in the sense that they apply to the entire document. Setting global chunk
options helps us create documents that are formatted consistently without
having to repetitively specify the same option every time we create a new code
chunk. For example, in this book I center almost all of the figures. Instead
of using the fig.align="'center' option in each code chunk that creates a
figure, I set the option globally.

To set a global option, first create a new code chunk at the beginning of
your document.?® You will probably want to set the option include=FALSE so
that knitr doesn’t include the code in your presentation document. Inside the

35In Markdown, you can put global chunk options at the very top of the document. In
LaTeX they should be placed after the \begin{document} command (see Chapter 11 for
more information on how LaTeX documents are structured).

o4

Reproducible Research with R and RStudio Second Edition

TABLE 3.1: A Selection of knitr Code Chunk Options

Chunk Option Label

Type

Description

cache

cache.vars

eval

echo

error

engine

fig.align

fig.path

include

message

out.height

out.width

results

tidy

warning

Logical

Character Vector

Logical
Logical

Logical

Character

Character

Character

Logical

Logical

Numeric

Numeric

Character

Logical

Logical

Whether or not to save results from the
code chunk in a cache database. Note:
cached chunks are only run when they
are changed.

Specify the variable names to save in
the cache database.

Whether or not to run the chunk.

Whether or not to include the code in
the presentation document.

Whether or not to include error
messages.

Set the programming language for knitr
to evaluate the code chunk with.

Align figures. (Note: does not work with
R Markdown documents.)

Set the directory where figures will be
saved.

When include=FALSE the chunk is
evaluated, but the results are not in-
cluded in the presentation document.

Whether or not to include R messages.

Set figures’ heights in the presentation
document.

Set figures’ widths in the presentation
document.

How to include results in the presenta-
tion document.

Whether or not to have knitr format
printed code chunks.

Whether or not to include warnings.

These commands are discussed in more detail in Chapter 8.

Getting Started with R, RStudio, and knitr /rmarkdown 55

code chunk use opts_chunk$set. You can set any chunk option as an argu-
ment to opts_chunk$set. The option will be applied across your document,
unless you set a different local option.

Here is an example of how you can center align all of the figures in Sweave-
style code chunks. Place the following code at the beginning of the document:

<<ChunkLabel, include=FALSE>>=

opts_chunk$set(fig.align="'center"')
c]

Note: if you want to use opts_chunk in a document rendered with rmarkdown
you will need to load knitr in a code chunk preceding the call.

3.3.6 knitr package options

knitr package options affect how the package itself runs. For example, the
progress option can be set as either TRUE or FALSE?® depending on whether
or not you want a progress bar to be displayed when you knit a code chunk.
You can use base.dir to set the directory where you want all of your figures
to be saved (see Chapter 4) or the child.path option to specify where child
documents are located (see Chapter 12).

You set package options in a similar way as global chunk options with
opts_knit$set. For example, include this code at the beginning of a docu-
ment to turn off the progress bar when it is knitted:

<<ChunkLabel, include=FALSE>>=

opts_knit$set (progress=FALSE)
e

3.3.7 Hooks

You can also set hooks. Hooks come in two types: chunk hooks and output
hooks. Chunk hooks run a function before or after a code chunk. Output hooks
change how the raw output is formatted. I don’t cover hooks in much detail

361t’s set as TRUE by default.

56 Reproducible Research with R and RStudio Second Edition

in this book. For more information on hooks, please see Yihui Xie’s webpage:
http://yihui.name/knitr/hooks.

3.3.8 knitr, rmarkdown, & RStudio

RStudio is highly integrated with knitr/rmarkdown and the markup languages
that they work with. Because of this integration it is easier to create and com-
pile knitr/rmarkdown documents in RStudio than plain R. Most of the RStu-
dio/knitr/rmarkdown features are accessed in the Source pane. The Source
pane’s appearance and capabilities change depending on the type of file you
have open in it. RStudio uses a file’s extension and, if it is an rmarkdown doc-
ument, its header, to determine what type of file you have open.?” We have
already seen some of the features the Source pane has for R source code files.
Let’s now look at how to use knitr and rmarkdown with R source code files as
well as the markup formats we cover in this book: R Markdown and R LaTeX.

Compiling R source code Notebooks

If you want a quick well-formatted account of the code that you ran and the
results that you got you can use RStudio’s “Compile Notebook” capabilities.
RStudio uses rmarkdown to create a standalone file presenting your source
code and results. It will include all of the code from an R source file as well
as the output. This can be useful for recording the steps you took to do an
analysis. You can see an example RStudio Notebook in Figure 3.6.

If you want to create a Notebook from an open R source code file simply
click the Compile Notebook icon () in the Source pane’s top bar.?® Then
in the window that pops up select the output type you would like (HTML,
PDF or MS Word) and click the Compile button. For this example I selected
HTML. In Figure 3.6 you can see near the top center right a small globe
icon next to the word “Publish”. Clicking this allows you to publish your
Notebook to RPubs (http://www.rpubs.com/). RPubs is a site for sharing
your Notebooks over the internet. You can publish not only Notebooks, but
also any knitr rmarkdown Markdown document you compile in RStudio.

R Markdown

The second image in Figure 3.3 is what the Source pane’s top bar looks like
when you have an R Markdown file open. You'll notice the familiar Run button
for running R code. At the far right you can see a new Chunks drop-down menu
(@ chunks-) Tn this menu you can select Insert Chunk to insert the basic
syntax required for a code chunk. There is also an option to Run Current

37You can manually set how you want the Source pane to act by selecting the file type
using the drop-down menu in the lower right-hand corner of the Source pane.
38 Alternatively, File — Compile Notebook. ..

Getting Started with R, RStudio, and knitr /rmarkdown 57

FIGURE 3.6: RStudio Notebook Example

~/Desktop/CarsScatterExample.html
CarsScatterExample.html

1| Open in Browser » Publish

CarsScatterExample.R

christophergandrud
Sun Nov 30 13:01:34 2014

Load package

library(ggplot2)
Plot cars distance vs. speed
gplot(cars$dist, cars$speed) +
theme_bw/()
25+ 3
. o .
.
.
20— . e o o .
. . .
. . . .
. . .
kel
(9] . 3
3
2154 e o .
699 3 . 3 .
S 3 3 .
o
e o o o

58 Reproducible Research with R and RStudio Second Edition

Chunk—i.e. the chunk where your cursor is located—Run Next Chunk, and Run
A1l chunks. You can navigate to a specific chunk using a drop-down menu
on the bottom left-hand side of the Source pane (e.g. Torteved =) This can be
very useful if you are working with a long document. To knit your file, click
the Knit HTML icon on the left side of the Source pane’s top bar. This will
clearly knit it to an HTML file. If you click on the downward arrow on the
right of this icon you will be given the opportunity to also knit the document
to a PDF or an MS Word file using rmarkdown. Other useful buttons in the R
Markdown Source pane’s top bar include the ABC spell check icon and question
mark icon, which gives you a Markdown syntax reference file in the Help pane.

Another useful RStudio knitr/rmarkdown integration feature is that RStu-
dio can properly highlight both the markup language syntax and the R code
in the Source pane. This makes your source code much easier to read and
navigate. RStudio can also fold code chunks. This makes navigating through
long documents, with long code chunks, much easier. In the first image in
Figure 3.7 you can see a small downward facing arrow at line 25. If you click
this arrow the code chunk will collapse to look like the second image in Figure
3.7. To unfold the chunk, just click on the arrow again.

You may also notice that there are code folding arrows on lines 27 and 34
in the first image. These allow us to fold parts of the code chunk. To enable
this option, create a comment line with at least one hash before the comment
text and at least four after it like this:

You will be able to fold all of the text after this comment up until the next
similarly formatted comment (or the end of the chunk).

R LaTeX

You can see in the final image in Figure 3.3 that many of the Source pane
options for R LaTeX files are the same as R Markdown files, the key differences
being that there is a Compile PDF icon (= ComeilePOF) instead of Knit HTML.
Clicking this icon knits the file and creates a PDF file in your R LaTeX file’s
directory. There is also a Format icon instead of the question mark icon. This
actually inserts LaTeX formatting commands into your document for things
such as section headings and bullet lists. These commands can be very tedious
to type out by hand otherwise.

Change default . Rnw knitter

By default RStudio may be set up to use Sweave for compiling LaTeX docu-
ments. To use knitr instead of Sweave to knit .Rnw files you should click on
Tools in the RStudio menu bar then click on Global Options.... Once the

Getting Started with R, RStudio, and knitr /rmarkdown 59

FIGURE 3.7: Folding Code Chunks in RStudio

(a) Not Folded

23 The first one just plots the number of countries in Laeven and Valencia's data that created **new=* AMCs
! in response to a systemic banking crisis
2

257 ***(r barTotal, echo=FALSE, message=FALSE}
26

27+

28 library(reshape)

29 library(stringr)

38 library(ggplot2)

31 library(plyr)

32 library(maps)

33

35
36 amcs ¢ read.csv("-LaevenValencia2012/RestructlongClean.csv")
37

(b) Folded

23 The first one just plots the number of countries in Laeven and Valencia's data that created **mew** AMCS
response to a systemic banking crisis

25¢ {r barTotal, echo=FALSE, message=FALSE @D

62 The next one is a **map of these countries*. The countries are coloured based on whether or not the AMCS
re centralised or decentralised (e.g. specific AMCs for individual institutions)

647 °(r map, echo=FALSE, message=FALSE, Tig.width=10}

Options window opens, click on the Sweave button. Select knitr from the
drop-down menu for “Weave Rnw files using:”. Finally, click Apply.3?

In the Sweave options menu you can also set which LaTeX typesetting
engine to use. By default it is set to the more established engine pdfLaTeX.
Another option is XeLaTeX. XeLaTeX has the ability to use many more char-
acters than pdfLaTeX as it works with UTF-8 encoded input. It can also
use any font on your computer. XeLaTeX is especially useful compared to
pdfLaTeX if you are using characters that are not found in standard English.

3.3.9 knitr & R

As knitr is a regular R package, you can Of course, knit documents in R
(or using the console in RStudio). All of the knitr syntax in your markup
document is the same as before, but instead of clicking a Compile PDF or
knit HTML button use the knit function. To knit a hypothetical Markdown file
Example. Rmd you first use the setwd command to set the working directory
(for more details see Chapter 4) to the folder where the Example. Rmd file is
located. In this example it is located on the desktop.*’

39In the Mac version of RStudio, you can also access the Options window via RStudio —
Preferences in the menu bar.

40Using the directory name ~/Documents/ is for Mac computers. Please use alternative
syntax discussed in Chapter 4 on other types of systems.

60 Reproducible Research with R and RStudio Second Edition

setwd ("~/Documents/")

Then you knit the file:

knit(input = "Example.Rmd", output = "Example.md")

You use the same steps for all other knittable document types. Note that if
you do not specify the output file, knitr will determine what the file name and
extension should be. In this example it would come up with the same name
and location as we gave it.

In this example, using the knit function only creates a Markdown file and
not an HTML file, as clicking the RStudio knit HTML did. Likewise, if you
use knit on a .Rnw file you will only end up with a basic LaTeX .tex file
and not a compiled PDF. To convert the Markdown file into HTML you need
to further run the .md file through the markdownToHTML command from the
markdown package, i.e.

mardownToHTML(file = "Example.md", output = "Example.html")

This is a bit tedious. Luckily, there is a command in the knitr package that
combines markdownToHTML and knit. It is called knit2html. You use it like
this:

knit2html(file = "Example.Rmd", output = "Example.html")

If we want to compile a .tex file in R we run it through the texi2pdf function
in the tools package. This package will run both LaTeX and BibTeX to create
a PDF with a bibliography (see Chapter 11 for more details on using BibTeX
for bibliographies). Here is a texi2pdf example:

library(tools)

Getting Started with R, RStudio, and knitr /rmarkdown 61

texi2pdf (file = "Example.tex")

Just like with knit2html, you can simplify this process by using the knit2pdf
command to compile a PDF file from a .Rnw or .Rtex document.

3.3.10 rmarkdown and R

Just as knitr is an R package that you can run from the console, you can also
run rmarkdown from the console. Instead of the knit function use render.
Imagine that Ezample. Rmd now has an rmarkdown header:

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "30 November 2015"
output:
pdf_document:
toc: true
html_document:
toc: false

This header specifies how the file can be compiled to either PDF or HTML.
When compiled to PDF it will include a table of contents. When compiled to
HTML it won’t. Now we use render:

render ("Example.Rmd")

This call will compile the document to a PDF in the working directory, because
PDF is listed as the first output format in the header. The document will be
called Exzample.pdf. Alternatively, to compile the R Markdown file to HTML
use:

62 Reproducible Research with R and RStudio Second Edition

render ("Example.Rmd", "html_document")

We could compile to both formats using:

render ("Example.Rmd", "all")

or

render ("Example.Rmd", c("pdf_document", "html_document"))

In all of these cases, render will not keep the intermediate .md or .tex doc-
ument. You can have these documents saved by adding keep_md or keep_tex
to the header. For example:

output:
pdf_document:
keep_tex: true
html_document:
keep_md: true

Finally, if you want to output to one format with the default rendering style,
For example, the HTML document, use html_document: default.

Chapter summary

We’ve covered a lot of ground in this chapter, including R basics, how to use
RStudio, and knitr/rmarkdown syntax for multiple markup languages. These
tools, especially R and knitr/rmarkdown, are fundamental to the reproducible
research process we will learn in this book. They enable us to create dynamic
text-based files that record our research steps in detail. In the next chapter
we will look at how to organize files created with these types of tools into
reproducible research projects.

Getting Started with R, RStudio, and knitr /rmarkdown 63
Appendix: knitr and Lyx

You may be more comfortable using a what-you-see-is-what-you-get (WYSI-
WYG) editor, similar to Microsoft Word. Lyx is a WYSIWYG LaTeX editor
that can be used with knitr. I don’t cover Lyx in detail in this book, but here
is a little information to get you started.

Set Up

To set up Lyx so that it can compile .Rnw files, click Document in the menu
bar then Settings. In the left-hand panel the second option is Modules. Click
on Modules and select Rnw (knitr). Click Add then Ok. Now, compile your
LaTeX document in the normal Lyx way.

Code Chunks

Enter code chunks into TeX Code blocks within your Lyx documents. To
create a new TeX Code block, select Insert from the menu bar then TeX
Code.

4

Getting Started with File Management

Careful file management is crucial for reproducible research. Remember two
of the guidelines from Chapter 2:

o Explicitly tie your files together.

e Have a plan to organize, store, and make your files available.

Apart from the times when you have an email exchange (or even meet in
person) with someone interested in reproducing your research, the main in-
formation independent researchers have about the procedures is what they
access in files you make available: data files, analysis files, and presentation
files. If these files are well organized and the way they are tied together is
clear, replication will be much easier. File management is also important for
you as a researcher, because if your files are well organized you will be able
to more easily make changes, benefit from work you have already done, and
collaborate with others.

Using tools such as R, knitr/rmarkdown, and markup languages like LaTeX
requires fairly detailed knowledge of where files are stored in your computer.
Handling files to enable reproducibility may require you to use command-line
tools to access and organize your files. R and Unix-like shell programs allow
you to control files—creating, deleting, relocating—in powerful and really re-
producible ways. By typing these commands you are documenting every step
you take. This is a major advantage over graphical user interface-type systems
where you organize files by clicking and dragging them with the cursor. How-
ever, text commands require you to know your files’ specific addresses—their
file paths.

In this chapter we discuss how a reproducible research project may be
organized and cover the basics of file path naming conventions in Unix-like
operating systems, such as Mac OS X and Linux, as well as Windows. We
then learn how to organize them with RStudio Projects. Finally, we’ll cover
some basic R and Unix-like shell commands for manipulating files as well as
how to navigate through files in RStudio in the Files pane. The skills you will
learn in this chapter will be heavily used in the next chapter (Chapter 5) and
throughout the book.

In this chapter we work with locally stored files, i.e. files stored on your
computer. In the next chapter we will discuss various ways to store and access
files remotely stored in the cloud.

65

66 Reproducible Research with R and RStudio Second Edition
4.1 File Paths & Naming Conventions

All of the operating systems covered in this book organize files in hierarchi-
cal directories, also known as file trees. To a large extent, directories can be
thought of as the folders you usually see on your Windows or Mac desktop.!
They are called hierarchical because directories are located inside of other
directories, as in Figure 4.1.

4.1.1 Root directories

A root directory is the first level in a disk, such as a hard drive. It is the root
out of which the file tree ‘grows’. All other directories are subdirectories of the
root directory.

On Windows computers you can have multiple root directories, one for
each storage device or partition of a storage device. The root directory is
given a drive letter assignment. If you use Windows regularly you will most
likely be familiar with C:\ used to denote the C partition of the hard drive.
This is a root directory. On Unix-like systems, including Macs and Linux
computers, the root directory is simply denoted by a forward slash (/) with
nothing before it.

4.1.2 Subdirectories & parent directories

You will probably not store all of your files in the root directory. This would
get very messy. Instead you will likely store your files in subdirectories of the
root directory. Inside of these subdirectories may be further subdirectories
and so on. Directories inside of other directories are also referred to as child
directories of a parent directory.

On Windows computers separate subdirectories are indicated with a back
slash (\). For example, if we have a folder called Data inside of a folder called
EzxampleProject which is located in the C root directory it has the address
C:\ExampleProject\Data.? When you type Windows file paths into R you
need to use two backslashes rather than one: e.g. C:\\ExampleProject\\Data.
This is because the \ is an escape character in R.? Escape characters tell R to
interpret the next character or sequence of characters differently. For example,
in Section 5.1 you’ll see how \t can be interpreted by R as a tab rather than
the letter “t”. Add another escape character to neutralize the escape character
so that R interprets it as a backslash. In other words, use an escape character
to escape the escape character. Another option for writing Windows file names
in R is to use one forward slash (/).

On Unix-like systems, including Mac computers, directories are indicated

1To simplify things, I use the terms ‘directory’ and ‘folder’ interchangeably in this book.

2For more information on Windows file path names see this helpful website: http://
msdn.microsoft.com/en-us/library/windows/desktop/aa365247 (v=vs.85) .aspx

3As we will see in Part IV, it is also a LaTeX and Markdown escape character.

Getting Started with File Management 67

with a forward slash (/). The file path of the Data file on a Unix-like sys-
tem would be: /ExampleProject/Data. Remember that a forward slash with
nothing before it indicates the root directory. So /ExampleProject/Data has a
different meaning than ExampleProject/Data. In the former, EzampleProject
is a subdirectory of the root. In the latter, FxampleProject is a subdirectory of
the current working directory (see below for details about working directories).
This is also true in Windows.

In this chapter I switch between the two file system naming conventions to
expose you to both. For the remainder of the book I use Unix-like file paths.
When you use relative paths, these will work across operating systems in R.
We'll get to relative paths in a moment.

4.1.3 Working directories

When you use R, markup languages, and many of the other tools covered in
this book, it is important to keep in mind what your current working directory
is. The working directory is the directory where the program automatically
looks for files and other directories, unless you tell it to look elsewhere. It is
also where it will save files. Later in this chapter we will cover commands for
finding and changing the working directory.

4.1.4 Absolute vs. relative paths

For reproducible research, collaborative research, and even if you ever change
the computer you work on, it is a good idea to use relative rather than absolute
file paths. Absolute file paths give the entire path of a given file or directory on
a specific system. For example, /ExampleProject/Data is an absolute path
as it specifies the path of the Data child directory all the way back to the
root directory. However, if our current working directory is ExampleProject
and we want to link to the Data child directory or a file in it, we don’t need
the absolute path. We could simply use Data/, i.e. the path relative to the
working directory.

It is good practice to use relative paths when possible and organize your
files such that using relative paths is easy. This makes your code less depen-
dent on the particular file structure of a particular computer. For example,
imagine you use C:\\ExampleProject\\Data in your source code to link to
the Data directory. Someone—a collaborator, a researcher reproducing your
work, or even you—then tries to run the code on a different computer. The
code will break if they are, for instance, using a Unix-like system or have
placed EzxampleProject in a different partition of their hard drive. This can
be fixed relatively straightforwardly by changing the file path in the source.
However, this is tedious (often not well documented) and unnecessary if you
use relative file paths.

68 Reproducible Research with R and RStudio Second Edition

4.1.5 Spaces in directory & file names

It is generally good practice to avoid putting spaces in your file and directory
names. For example, I called the example project parent directory “Exam-
pleProject” rather than “Example Project”. Spaces in file and directory names
can sometimes create problems for computer programs trying to read the file
path. The program may believe that the space indicates that the path name
has ended. To make multi-word names easily readable without using spaces,
adopt a convention such as CamelBack. In CamelBack new words are indi-
cated with capital letters, while all other letters are lower case. For example,
“ExampleProject”.

FIGURE 4.1: Example Research Project File Tree

I

4| ExampleProject I

Paper.Rnw

Slideshow.Rnw README.md

Website.Rmd

Analysis

Analysisl.R

Analysis2.R Main.bib

Packages.bib

|

e

Makefile
Gatherl.R
Gather2.R

MergeData.R

—{ MainDataVariableDescriptions.md

MainData.csv

4.2 Organizing Your Research Project

Figure 4.1 gives an example of how the files in a simple reproducible re-
search project could be organized. The project’s parent directory is called

Getting Started with File Management 69

EzxampleProject. Inside this directory are the primary knittable documents
(Paper.Rnw Slideshow. Rnw, and Website. Rmd). In addition there is an Anal-
ysis sub-directory with the R files to run the statistical analyses followed by
a further Data child directory.

The nested file structure allows you to use relative file paths. The knittable
documents can call Analysisi.R with the relative path Analysis/Analysisl.R,
which in turn could call a file in the Data/ subdirectory. If all of the directories
were at the same level of the file tree then you would need to use absolute file
paths.

In addition to the main files and subdi-
rectories in EzampleProject you will proba- FIGURE 4.2: An Example
bly notice a file called README.md. The RStudio Project Menu
README.md file gives an overview of all
the files in the project. It should briefly de-

scribe the project including things like its & Project: (None) ~
title, author(s), topic, any copyright infor- & New Project..
mation, and so on. It should also indicate &0 Open Project...

Open Project in New Window...

how the folders in the project are organized
and give instructions for how to reproduce
the project. The README file should be in

Close Project

texreg

repmis

the main project folder—in our example this DataCombine
is called ExampleProject—so that it is easy simPH

to find. If you are storing your project as a dpmr
GitHub repository (see Chapter 5) and the Clear Project List
file is called README, its contents will au- Project Options...

tomatically be displayed on the repository’s

main page. If the README file is written

using Markdown (e.g. README.md), it will also be properly formatted. Fig-
ure 5.2 shows an example of this.

It is good practice to dynamically include the system information for the R
session you used to create the project. To do this you can write your README
file with R Markdown. Simply include the sessionInfo() command in a knitr
code chunk in the R Markdown document. If you knit this file immediately
after knitting your presentation document, it will record the information for
that session.

You can also dynamically include session info in a LaTeX document. To
do this, use the toLatex command in a code chunk. The code chunk should
have the option results='asis'. The code is:

toLatex(sessionInfo())

70 Reproducible Research with R and RStudio Second Edition
4.3 Setting Directories as RStudio Projects

If you are using RStudio, you may want to organize your files as Projects.
You can turn a normal directory into an RStudio Project by clicking on File
in the RStudio menu bar and selecting New Project.... A new window will
pop-up. Select the option Existing Directory. Find the directory you want
to turn into an RStudio Project by clicking on the Browse button. Finally,
select Create Project. You will also notice in the Create Project pop-up
window that you can build new project directories and create a project from
a directory already under version control (we’ll do this at the end of Chapter
5). When you create a new project you will see that RStudio has put a file
with the extension .Rproj into the directory.

Making your research project directories RStudio Projects is useful for a
number of reasons:

e The project is listed in RStudio’s Project menu where it can be opened easily
(see Figure 4.2).

e« When you open the project in RStudio it automatically sets the working
directory to the project’s directory and loads the workspace, history, and
source code files you were last working on.

e You can set project specific options like whether PDF presentation docu-
ments should be compiled with Sweave or knitr.

¢ When you close the project your R workspace and history are saved in the
project directory if you want.

o It helps you version control your files.
¢ You can build your Project—run the files in a specific way—with makefiles.

¢ Gives you an easy-to-use interface for managing the R packages that your
project depends on.

We will look at many of these points in more detail in the next few chapters.

4.4 R File Manipulation Commands

R has a range of commands for handling and navigating through files. In-
cluding these commands in your source code files allows you to more easily
replicate your actions.

getwd

To find your current working directory use the getwd command:

Getting Started with File Management 71

getwd ()

[1] "/home/radha/garage/RR/Rep-Res-Book-master/Source/Children/Chapter4"

The example here shows you the current working directory that was used
while knitting this chapter.

list.files

Use the 1ist.files command to see all of the files and subdirectories in the
current working directory. You can list the files in other directories too by
adding the directory path as an argument to the command.

list.files()

[1] "auto" "chapter4.Rnw" "images4"

You can see that the Chapters folder has the file chapter4.Rnw (the markup
file used to create this chapter) and a child directory called images/ where I
stored the original versions of the figures included in this chapter.

setwd

The setwd command sets the current working directory. For example, if we
are on a Mac or other Unix-like computer we can set the working directory to
the GatherSource directory in our Example Project (see Figure 4.1) like this:

setwd ("/ExampleProject/Data/GatherSource")

Now R will automatically look in the GatherSource folder for files and will
save new files into this folder, unless we explicitly tell it to do otherwise.

When working with a knittable document, setting the working directory
once in a code chunk changes the working directory for all subsequent code
chunks.

root.dir

By default the root (or working) directory for all of the code chunks in a
knittable document is the directory where this document is located. You can

72 Reproducible Research with R and RStudio Second Edition

reset the directory by feeding a new file path to the root.dir option. We
can set this globally* for all of the chunks in the document by including the
following code in the document’s first chunk.

opts_knit$set(root.dir = '/ExampleProject/Analysis')

Here we set the /ExampleProject/Analysis sub-directory as the root directory
for all of the chunks in our presentation document.

Note: In general it is preferable to use a nested file structure, as we saw
before, rather than specify root.dir. A nested file structure creates one less
step for those trying to reproduce your work on a different computer. They
do not need to change the root.dir file path.

dir.create

Sometimes you may want to create a new directory. You can use the
dir.create command to do this.® For example, to create a EzampleProject
file in the root C directory on a Windows computer type:

dir.create("C:\\ExampleProject")

file.create

Similarly, you can create a new blank file with the file.create command.
To add a blank R source code file called SourceCode.R to the ExampleProject
directory on the C drive use:

file.create("C:\\ExampleProject\\SourceCode.R")

cat

If you want to create a new file and put text into it use the cat (concatenate
and print) command. For example, to create a new file in the current work-
ing directory called EzampleEcho.md that includes the text “Reproducible
Research with R and RStudio” type:

4See the discussion of global chunk options in Chapter 3, page 53.
5Note: you will need the correct system permissions to be able to do this.

Getting Started with File Management 73

cat ("Reproducible Research with R and RStudio",
file = "ExampleCat.md")

In this example we created a Markdown formatted file by using the .md file
extension. We could, of course, change the file extension to .R to set it as an
R source code file, .Rnw to create a knitr LaTeX file, and so on.

You can use cat to print the contents of one or more objects to a file.
Warning: The cat command will overwrite existing files with the new con-
tents. To add the text to existing files use the append = TRUE argument.

cat("More Text", file = "ExampleCat.md",
append = TRUE)

unlink

You can use the unlink command to delete files and directories.

unlink ("C:\\ExampleProject\\SourceCode.R")

Warning: the unlink command permanently deletes files, so be very careful
using this command.

file.rename

You can use the file.rename to, obviously, rename a file. It can also be used
to move a file from one directory to another. For example, imagine that we
want to move the EzampleCat.md file from the directory EzampleProject to
one called MarkdownFiles that we already created.®

file.rename(from = "C:\\ExampleProject\\ExampleCat.md",
to = "C:\\MarkdownFiles\\ExampleCat.md")

6The file.rename command won’t create new directories. To move a file to a new di-
rectory you will need to create the directory first with dir.create.

74 Reproducible Research with R and RStudio Second Edition

file.copy

The file.rename fully moves a file from one directory to another. To copy
the file to another directory use the file.copy command. It has the same
syntax as file.rename:

file.copy(from = "C:\\ExampleProject\\ExampleCat.md",
to "C:\\MarkdownFiles\\ExampleCat.md")

4.5 Unix-like Shell Commands for File
Management

Though this book is mostly focused on using R, for reproducible research it can
be useful to use a Unix-like shell program to manipulate files in large projects.
Unix-like shell programs including Bash on Mac and Linux and Windows
PowerShell allow you to type commands to interact with your computer’s
operating system.” We will especially return to shell commands in the next
chapter when we discuss Git version control and makefiles for collecting data in
Chapter 6, as well as the command-line program® Pandoc (Chapter 12 and 13).
We don’t have enough space to fully introduce shell programs or even all of the
commands for manipulating files. We are just going to cover some of the basic
and most useful commands for file management. For good introductions for
Unix and Mac OS 10 computers see William E. Shotts Jr’s [2012] book on the
Linux command-line. For Windows users, Microsoft maintains a tutorial on
Windows PowerShell at http://technet.microsoft.com/en-us/library/
hh848793. The commands discussed in this chapter should work in both Unix-
like shells and Windows PowerShell.

It’s important at this point to highlight a key difference between R and
Unix-like shell syntax. In shell commands you don’t need to put parentheses
around your arguments. For example, if I want to change my working directory
to my Mac Desktop in a shell using the cd command I simply type:®

"You can access Bash via the Terminal program on Mac OS 10 and Linux computers. It
is the default shell on Mac and Linux, so it loads automatically when you open the Terminal.
Windows PowerShell comes installed with Windows.

8 A command-line program is just a program you run from a shell.

9Many shell code examples in other sources include the shell prompt, like the $ in Bash
or > in PowerShell. These are like R’s > prompt. I don’t include the prompt in code examples
in this book because you don’t type them.

Getting Started with File Management 75

cd /Users/Me/Desktop

In this example Me is my user name.

cd

As we just saw, to change the working directory in the shell just use the cd
(change directory) command. Here is an example of changing the directory in
Windows PowerShell:

cd C:/Users/Me/Desktop

If you are in a child directory and want to change the working directory to
the previous working directory you were in, simply type:

cd -

If, for example, our current working directory is /User/Me/Desktop and we
typed cd followed by a minus sign (cd -) then the working directory would
change to /User/Me. Note this will not work in PowerShell.

pwd

To find your current working directory, use the pwd command (present working
directory). This is essentially the same as R’s getwd command.

pwd

1s

The 1s (list) command works very similarly to R’s 1ist.files command. It
shows you what is in the current working directory.

76 Reproducible Research with R and RStudio Second Edition

1s

As we saw earlier, R also has an 1s command. R’s 1s command lists items
in the R workspace. The shell’s 1s command lists files and directories in the
working directory.

mkdir

Use mkdir to create a new directory. For example, if I wanted to create a
directory in my Linux root directory called NewDirectory I would type:

mkdir /NewDirectory

If running this code on Mac or Linux gives you an error message like this:

mkdir: /NewDirectory: Permission denied

you simply need to use the sudo command to run the command with higher
privileges.

sudo mkdir /NewDirectory

Running this code will prompt you to enter your administrator password.

echo

There are a number of ways to create new files in Unix-like shells. One of the
simplest ways is with the echo command. This command simply prints its
arguments. For example:

echo Reproducible Research with R and RStudio

Reproducible Research with R and RStudio

Getting Started with File Management 7

If you add the greater-than symbol (>) after the text you want to print and
then a file name, echo will create the file (if it doesn’t already exist) in the
current working directory and then print the text into the file.

echo Reproducible Research with R and RStudio > ExampleEcho.md

Using only one greater-than sign will completely erase the EzampleEcho.md
file’s contents and replace them with Reproducible Research with R and
RStudio. To add the text at the end of an existing file, use two greater-than
signs (>>).

echo More text. >> ExampleEcho.md

There is also a cat shell command. It works slightly differently than the R
version of the command and I don’t cover it here.

rm

The rm command is similar to R’s unlink command. It removes (deletes)
files or directories. Again, be careful when using this command, because it
permanently deletes the files or directories.

rm ExampleEcho.md

As we saw in Chapter 3, R also has an rm command. It is different because it
removes objects from your R workspace rather than files from your working
directory.

mv

To move a file from one directory to another with the shell, use the mv (move)
command. For example, to move the file ExzampleEcho.md from ExamplePro-
jects to MarkdownFiles use the following code and imagine both directories
are in the root directory:'°

10Tf they were not in the root directory we would not place a forward slash at the begin-
ning.

78 Reproducible Research with R and RStudio Second Edition

mv /ExampleProject/ExampleEcho.md /MarkdownFiles

Note that the MarkdownFiles directory must already exist, otherwise it will
simply rename the file. So this command is similar to the R command
file.rename.

cp
The mv command completely moves a file from one directory to another. To

copy a version of the file to a new directory use the cp command. The syntax
is similar to mv:

cp /ExampleProject/ExampleEcho.md /MarkdownFiles

system (R command)

You can run shell commands from within R using R’s system command. For
example, to run the echo command from within R type:

system("echo Text to Add > ExampleEcho.md")

4.6 File Navigation in RStudio

The RStudio Files pane allows us to navigate our file tree and do some basic
file manipulations. The left panel of Figure 7?7 shows us what this pane looks
like. The pane allows us to navigate to specific files and folders and delete
and rename files. To select a folder as the working directory tick the dialog
box next to the file then click the More button and select Set As Working

Directory. Under the More button (®Mere-) vou will also find options to
Move and Copy files (see the right pane of Figure 77?).

The Files pane is a GUI, so our actions in the Files pane are not as easily
reproducible as the commands we learned earlier in this chapter.

Chapter summary

In this chapter we’ve learned how to organize our research files to enable dy-
namic replication. This included not only how they can be ordered in a com-

Getting Started with File Management 79

puter’s file system, but also the file path naming conventions—the addresses—
that computers use to locate files. Once we know how these addresses work
we can use R and shell commands to refer to and manipulate our files. This
skill is particularly useful because it allows us to place code in text-based files
to manipulate our project files in highly reproducible ways. In the next few
chapters we will begin to put these skills in practice when we learn how to
store our files and create data files in reproducible ways.

Part 11

Data Gathering and
Storage

81

5

Storing, Collaborating, Accessing Files, and
Versioning

In addition to being well organized, your research files need to be accessi-
ble for other researchers to be able to reproduce your findings. A useful way
to make your files accessible is to store them on a cloud storage service!
[see Howe, 2012]. This chapter describes in detail two different cloud stor-
age services—Dropbox and GitHub-that you can use to make your research
files easily accessible to others. Not only do these services enable others to
reproduce your research, they also have a number of benefits for your research
workflow. Researchers often face a number of data management issues that,
beyond making their research difficult to reproduce, can make doing the initial
research difficult.

First, there is the problem of storing data so that it is protected against
computer failure—virus infections, spilling coffee on your laptop, and so on.
Storing data locally—on your computer—or on a flash drive is generally more
prone to loss than on remote servers in the cloud.

Second, we may work on a project with different computers and mobile
devices. For example, we may use a computer at work to run computationally
intensive analysis, while editing our presentation document on a tablet com-
puter while riding the train to the office. So, we need to be able to access our
files from multiple devices in different locations. We often need a way for our
collaborators to access and edit research files as well.

Finally, we almost never create a data set or write a paper perfectly all at
once. We may make changes and then realize that we liked an earlier version,
or parts of an earlier version better. This is a particularly important issue in
data management where we may transform our data in unintended ways and
want to go back to earlier versions. Also, when working on a collaborative
project, one of the authors may accidentally delete something in a file that
another author needed. To deal with these issues we need to store our data
in a system that has version control. Version control systems keep track of
changes we make to our files and allows us to access previous versions if we
want to.

You can solve all of these problems in a couple of different ways using free
or low cost cloud-based storage formats. In this chapter we will learn how to
use Dropbox and Git/GitHub for research files:

1These services store your data on remote servers.

83

84 Reproducible Research with R and RStudio Second Edition
e storage,

e accessing,

¢ collaboration,

e version control.

5.1 Saving Data in Reproducible Formats

Before getting into the details of cloud-based data storage for all of our re-
search files, let’s consider what type of formats you should actually save your
data in. A key issue for reproducibility is that others are able to not only get
hold of the exact data you used in your analysis, but be able to understand
and use the data now and in the future. Some file formats make this easier
than others.

In general, for small to moderately-sized data sets? plain-text formats like
comma-separated values (. csv) or tab-separated values® (.tsv) are good ways
to store your data. These formats simply store a data set as a text file. A row
in the data set is a line in the text file. Data is separated into columns with
commas or tabs, respectively. These formats are not dependent on a specific
program. Any program that can open text files can open them, including
a wide variety of statistical programs other than R as well as spreadsheet
programs like Microsoft Excel. Using text file formats helps future-proof your
research. Version control systems that track changes to text-like Git—are also
very effective version control systems for these types of files.

Use the write.table command to save data in plain-text formats from
R. For example, to save a data frame called Data as a CSV file called Main-
Data.csv in our example DataF'iles directory (see Figure 4.1):

write.table(Data, "/ExampleProject/Data/DataFiles/MainData.csv",
sep = ",", row.names = FALSE)

row.names = FALSE prevents R from including the row names in the output

2] don’t cover methods for storing and handling very large data sets—with high hundreds
of thousands and more observations. For information on large data and R, not just storage,
one place to look is this blog post from RDataMining: http://rdatamining.wordpress.com/
2012/05/06/online-resources-for-handling-big-data-and-parallel-computing-in-r/
(posted 6 May 2012). One popular service for large file storage is Amazon S3
(http://aws.amazon.com/s3/). I haven’t used this service and can’t suggest ways to
integrate it with R.

3Sometimes this format is called tab-delimited values.

Storing, Collaborating, Accessing Files, and Versioning 85

file.* The sep = "," argument specifies that we want to use commas to sep-
arate values into columns. For CSV files you can use a modified version of
this command called write.csv. This command simply makes it so that you
don’t have to write sep = ", w5

If you want to save your data with values separated by tabs, rather than
commas, simply set the argument sep = "\t" and set the file extension to
.tsv.

R is able to save data in a wide variety of other file formats, mostly through
the foreign package (see Chapter 6). These formats may be less future-proof
than simple text-formatted data files.

One advantage of many other statistical programs’ file formats is that they
include not only the underlying data but also other information like variable
descriptions. If you are using plain-text files to store your data you will need
to include a separate file, preferably in the same directory as the data file
describing the variables and their sources. In Chapter 9 (Section 9.3.6) we
will look at how to automate the creation of variable description files.

5.2 Storing Your Files in the Cloud: Dropbox

In this book we’ll cover two (largely) free cloud storage services that allow you
to store, access, collaborate on, and version control your research files. These
services are Dropbox and GitHub.® Though they both meet our basic storage
needs, they do so in different ways and require different levels of effort to set
up and maintain.

These two services are certainly not the only way to make your research
files available. Research-oriented services include the SDSC Cloud,” the Data-
verse Project,® figshare,” and RunMyCode.'® These services include good
built-in citation systems, unlike Dropbox and GitHub. They may be a very
good place to store research files once the research is completed or close to
completion. Some journals are beginning to require key reproducibility files be
uploaded to these sites. However, these sites’ ability to store, access, collabo-
rate on, and version control files during the main part of the research process
is mixed. Services like Dropbox and GitHub are very capable of being part of
the research workflow from the beginning.

The easiest types of cloud storage for your research are services like Drop-

4Frequently the row names are just the row numbers which may have no substantive
meaning.

Surite.csv is a ‘wrapper’ for write.table.

SDropbox provides a minimum amount of storage for free, above which they charge a
fee. GitHub lets you create publicly accessible repositories—kind of like project folders—for
free, but they charge for private repositories.

"https://cloud.sdsc.edu/hp/index.php

8http://thedata.org/

9http://figshare.com/

Onttp://www.runmycode . org/

86 Reproducible Research with R and RStudio Second Edition

box!! and Google Drive.'? These services not only store your data in the

cloud, but also provide ways to share files. They even include basic version
control capabilities. I'm going to focus on Dropbox because it currently offers
a complete set of features that allow you to store, version, collaborate, and
access your data. I will focus on how to use Dropbox on a computer. Some
Dropbox functionality may be different on mobile devices.

5.2.1 Storage

When you sign up for Dropbox and install the program!® it creates a direc-
tory on your computer’s hard drive. When you place new files and folders in
this directory and make changes to them, Dropbox automatically syncs the
directory with a similar folder on a cloud-based server. Typically when you
sign up for the service you’ll receive a limited amount of storage space for free,
usually a few gigabytes. This is probably enough storage space for a number
of text file-based research projects.

5.2.2 Accessing data

All files stored on Dropbox have a URL address through which they can
be accessed from a computer connected to the internet. Files in either the
Dropbox Public'* folder or in other, non- Public folders can be downloaded into
R. Downloading files from these two different sources requires two different
methods. Let’s quickly look at how to download files from the Public folder.
In the next chapter (see Section 6.3.2) we’ll look at how to download data
from non-Public Dropbox folders into R.

If the file is stored in the Public folder, right-click on the file icon in your
Dropbox folder on your computer. Then click Copy Public Link. This copies
the URL into your clipboard, from which you can paste it into your R source
code (or wherever). If you are logged into the Dropbox website, right-click on
files in your Public folder and then select Copy public link....

Once you have the URL you can load the file directly into R using the
source_data command in the repmis package [Gandrud, 2015] for plain-
text formatted data or use the source_url command in the devtools package
[Wickham and Chang, 2015a] for source code files (see Chapter 8).

Let’s download data directly into R from my Dropbox Public folder.
The data set’s URL is: https://dl.dropbox.com/u/12581470/code/

Mhttp: //www.dropbox. com/

2https://drive.google.com/

13See https://www.dropbox.com/downloading for downloading and installation instruc-
tions.

14Note: if you created your Dropbox account after 4 October 2012 you will not au-
tomatically have a Public folder. To enable the folder on your account see this website:
https://wuw.dropbox.com/help/16/en. You will need a Pro or Dropbox for Business ac-
count to enable a new Public folder.

Storing, Collaborating, Accessing Files, and Versioning 87

Replicability_code/Fin_Trans_Replication_Journal/Data/public.fin.
msm.model.csv.!?

Download data on Financial Regulators
stored in a Dropbox Public folder

Load repmts
library(repmis)

Place the URL into the object FinURL
FinURL <- "http://bit.ly/14aS5qq"

Download data
FinURL <-"https://dl.dropbox.com/u/12581470/code/Replicability_code/Fin_Trans_Replication_

Download data
FinRegulatorData <- repmis::source_data(FinURL,
sep = n’n

header = TRUE)

Downloading data from: https://dl.dropbox.com/u/12581470/code/Replicability_code/Fin_Tr
##

SHA-1 hash of the downloaded data file is:

T7fdcb0a9785d52e0f3d450e4bde29dbc4e2b045a

#FinRegulatorData <- source_data (FinURL,
sep = Il’ /I)
header = TRUE)

Show wvartiables in FinRegulatorData
names (FinRegulatorData)

[1] "idn" "country" "year" "reg_4state"

Let’s go through this code. We already saw in our discussion of write.table
how the sep = "," argument specifies that the data file’s values are separated
by commas. The header = TRUE argument tells R that the first row of the file
contains the variable names. Note that from version 0.4 repmis automatically
guesses how the columns are separated and whether or not to use the first

15 This data is from Gandrud [2013a]. I've shortened the URL using Bitly (https://bitly.
com/) so that it will fit on the page.

88 Reproducible Research with R and RStudio Second Edition

row as the header. Because of this, we usually don’t need to set the sep and
header arguments explicitly. I’ve only done so in this example for illustration.

You're probably also wondering about the line that begins ## SHA-1 hash
of ...in the output. The long string of numbers and letters at the end of this
line is basically a unique ID that source_data assigns to the file. It is called
an SHA-1 hash. We’ll see SHA-1 hashes more in the next section on GitHub
(Section 5.3) and in Chapter 6 (Section 6.3.2). To give you a preview: it allows
us to see if the file that we downloaded is the file we thought we downloaded.

To get a file’s URL from your local Dropbox folder when the file is not in
your Public folder, you also right-click on the file. Then choose Share Dropbox
Link. This will copy the link URL into your clipboard. You can also get these
URL links through the online version of your Dropbox. First, log into the
Dropbox website. You can again right-click on the file name and then Share.
This will bring up a box displaying the link for you to copy. Alternatively,
when you hover your cursor over a file or folder you will see a Share icon

(=) appear on the far right. Clicking on this icon will also get you the
link.

In either case, you cannot use the source_data command to download
data from non-Public folders into R. In the next chapter we’ll see how to
import this type of data into R (see Section 6.3.2). To give you a preview:
we’ll use the source_DropboxData function from the repmis package.

5.2.3 Collaboration

Though others can easily access your data and files with Dropbox URL links,
you cannot save files through the link. You must save files in the Dropbox
folder on your computer or upload them through the website. If you would
like collaborators to be able to modify the research files you will need to
‘share’ the Dropbox folder with them. You cannot fully share your Public
folder, i.e. give others write permission, so you will need to keep the files you
want collaborators to be able to modify in a non-Public folder. Once you create
this non-Public folder you can share it with your collaborators by going to the
Dropbox website and right-clicking on the folder’s name. Then select Invite
people to collaborate.... Enter your collaborator’s email address when
prompted. They will be sent an email that will allow them to accept the share
request and, if they don’t already have an account, sign up for Dropbox.

5.2.4 Version control

Dropbox has a simple version control system. Every time you save a document
a new version is created on Dropbox. To view a previous version, navigate to
the file on the Dropbox website. Then right-click on the file. In the menu that
pops up select Previous Versions. This will take you to a webpage listing
previous versions of the file, who created the version, and when it was created.
A new version of a file is created every time you save a file and it is synced to

Storing, Collaborating, Accessing Files, and Versioning 89

the Dropbox cloud service. You can see a list of changes made to files in your
Dropbox folder by going to the website and clicking on Events.

Note that with a free Dropbox account, previous versions of a file are only
stored for 30 days. To be able to save previous versions for more than 30
days you will need a paid account.!'®

5.3 Storing Your Files in the Cloud: GitHub

Dropbox adequately meets our four basic criteria for reproducible data stor-
age. It is easy to set up and use. GitHub meets the criteria and more, especially
when it comes to version control. It is, however, less straightforward at first.
In this section we will learn enough of the basics to get you started using
GitHub to store, access, collaborate on, and version control your research.

GitHub is an interface and cloud hosting service built on top of the Git
version control system.'” Git does the version control. GitHub stores the data
remotely as well as providing a number of other features, some of which we
look at below. GitHub was not explicitly designed to host research projects
or even data. It was designed to host “socially coded” computer programs—in
what Git calls “repositories”-repos for short—by making it easy for a number
of collaborators to work together to build computer programs. This seems
very far from reproducible research.

Remember that as reproducible researchers, we are building projects out
of interconnected text files. In important ways, this is exactly the same as
building a computer program. Computer programs are also basically large
collections of interconnected text files. Like computer programmers, we need
ways to store, version control, access, and collaborate on our text files. Because
GitHub is very actively used by people with similar needs (who are also really
good programmers), the interface offers many highly developed and robust
features for reproducible researchers.

GitHub’s extensive features and heart in the computer programming com-
munity means that it takes a longer time than Dropbox for novice users to set
up and become familiar with. So we need good reasons to want to invest the
time needed to learn GitHub. Here is a list of GitHub’s advantages over Drop-
box for reproducible research that will hopefully convince you to get started
using it:'8

Storage and access

e Dropbox simply creates folders stored in the cloud which you can share

16For more details see: https://www.dropbox.com/en/help/11.

17T used Git version 1.7.9.6 for this book.

18Because many of these features apply to any service that relies on Git, much of this
list of advantages also applies to alternative Git cloud storage services such as Bitbucket
(https://bitbucket.org/).

90 Reproducible Research with R and RStudio Second Edition

with other people. GitHub makes your projects accessible on a fully featured
project website (see Figure 5.2). An example feature is that it automatically
renders Markdown files called README.md"® in a GitHub directory on the
repository’s website. This makes it easy for independent researchers to find
the file and read it.

e GitHub can create and host a website for your research project that you
could use to present the results, not just the replication files.

Collaboration

¢ Dropbox allows multiple people to share files and change them. GitHub does
this and more.

o GitHub keeps meticulous records of who contributed what to a project.

o Each GitHub repository has an “Issues” area where you can note issues and
discuss them with your collaborators. Basically, this is an interactive to-do
list for your research project. It also stores the issues so you have a full
record.

e Each repository can also host a wiki that, for example, could explain in
detail how certain aspects of a research project were done.

e Anyone can suggest changes to files in a public repository. These changes can
be accepted or declined by the project’s authors. The changes are recorded
by the Git version control system. This could be especially useful if an
independent researcher notices an error.

Version control

e Dropbox’s version control system only lets you see files’ names, the times
they were created, who created them, and revert back to specific versions.
Git tracks every change you make. The GitHub website and GUI programs
for Mac and Windows provide nice interfaces for examining specific changes
in text files.

e Dropbox creates a new version every time you save a file. This can make
it difficult to actually find the version you want as the versions quickly
multiply. Git’s version control system only creates a new version when you
tell it to.

« All files in Dropbox are version controlled. Git allows you to ignore specific
files. This is helpful if you have large binary files (i.e. not text files) that
you do not want to version control because doing so will use up considerable
storage space.

YYou can use a variety of other markup languages as well. See https://GitHub.com/
GitHub/markup.

Storing, Collaborating, Accessing Files, and Versioning 91

FIGURE 5.1: A Basic Git Repository with Hidden .git Folder Revealed

git

b
An Example Repositor
B README.md ple Rep ¥

Mame README.md
Kind BBEdit text document
Size 24 bytes
Created Today 13:57
Modified Today 16:24
Last opened Today 16:24

isitories » (] ExampleProject » % README.md

e Unless you have a paid account, previous file versions in Dropbox disappear
after 30 days. GitHub stores previous versions indefinitely for all account

types.

e Dropbox does not merge conflicting versions of a file together. This can be
annoying when you are collaborating on a project and more than one author
is making changes to documents at the same time. Git identifies conflicts
and lets you reconcile them.

« Git is directly integrated into RStudio Projects.2°

5.3.1 Setting up GitHub: Basic

There are at least three ways to use Git/GitHub on your computer. You can
use the command-line version of Git. It’s available for Mac and Linux (in
the Terminal) as well as Windows through Git Bash.?! You can also use the
Graphical User Interface GitHub program. Currently, it’s only available for
Windows and Mac. RStudio also has GUI-style Git functionality for RStudio
Projects. In this section I focus on how to use the command-line version,
because it will help you understand what the GUI versions are doing and
allow you to better explore more advanced Git features not covered in this
book. In the next section I will mention how to use Git with RStudio Projects.

The first thing to do to set up Git and GitHub is go to the GitHub
website (https://GitHub.com/) and sign up for an account. Second, you

20RStudio also supports the Subversion version control system, but I don’t cover that
here.
21The interface for Git Bash looks a lot like the Terminal or Windows PowerShell.

92 Reproducible Research with R and RStudio Second Edition

should go to the following website for instructions on setting up GitHub:
https://help.GitHub.com/articles/set-up-git. The instructions on that
website are very comprehensive, so I'll direct you there for the full setup in-
formation. Note that installing the GUI version of GitHub also installs Git
and, on Windows, Git Bash.

5.3.2 Version control with Git

Git is primarily a version control system, so we will start our discussion of
how to use it by looking at how to version your repositories.

Setting up Git repositories locally

You can setup a Git repo on your computer with the command-line.?? I keep
my repositories in a folder called git_repositories,?®> though you can use Git
with almost any directory you like. The git_repositories directory has the
root folder as its parent. Imagine that we want to set up a repository in
this directory for a project called EzampleProject. Initially it will have one
README file called README.md. To do this, we would first type into the
Terminal for Mac and Linux computers:

mkdir /git_repositories/ExampleProject

cd /git_repositories/ExampleProject

echo "# An Example Repository" > README.md

So far we have only made the new directory and set it as our working di-
rectory (see Chapter 4). All of the examples in this section assume your cur-
rent working directory is set to the repo. Then, with the echo shell com-
mand we created a new file named README.md that includes the text
An Example Repository. Note that the code is basically the same in Win-
dows PowerShell or Git Bash. Also, you don’t have to do these steps in the
command-line. You could just create the new folders and files the same way
that you normally do with your mouse in your GUI operating system.

22Much of the discussion of the command-line in this section is inspired by Nick Farina’s
blog post on Git (see http://nfarina.com/post/9868516270/git-is-simpler, posted 7
September 2012).

23To follow along with this code you will first need to create a folder called git_repositories
in your root directory. Note also that throughout this section I use Unix file path conven-
tions.

Storing, Collaborating, Accessing Files, and Versioning 93

Now that we have a directory with a file, we can tell Git that we want to
treat the directory EzampleProject as a repository and that we want to track
changes made to the file README.md. Use Git’s init (initialize) command
to set the directory as a repository. See Table 5.1 for the list of Git commands
covered in this chapter.?* Use Git’s add command to add a file to the Git
repository. For example,

git init

git add README.md

You probably noticed that you always need to put git before the command.
This tells the shell what program the command is from. When you initialize a
folder as a Git repository, a hidden folder called .git is added to the directory
(see Figure 5.1). This is where all of your changes are kept. If you want to
add all of the files in the working directory to the Git repository type:

git add .

When we want Git to track changes made to files added to the repository
we can use the commit command. In Git language we are “committing” the
changes to the repository.

git commit -a -m "First Commit, created README file"

Note: the files won’t appear on GitHub yet. Later in the chapter we will
learn how to push commits to your remote GitHub repository. The -a (all)
option commits changes made to all of the files that have been added to the
repository. You can include a message with the commit using the -m option
like: "First Commit, created README file". Messages help you remember
general details about individual commits. This is helpful when you want to
revert to old versions. Remember: Git only tracks changes when you commit
them.

24For a comprehensive guide to Git commands, see http://git-scm.com/.

94 Reproducible Research with R and RStudio Second Edition
FIGURE 5.2: Part of this Book’s GitHub Repository Webpage

Source code files for the book Reproducible Research with R/RStudio

http://christophergandrud.github.io/RepResR-RStudio/ — Edit <> Code |
329 commits 3 branches 4 releases 5 contributors @ Issues 2
-
i Pull Requests 0
§s branch: master - | Rep-Res-Book / + =
EE Wiki
merge issue
christophergandrud authored on Sep 3 latest commit 25ec747cdc
4~ Pulse
™ oid almost final first draft 2 years ago
il Graph:
B Source merge issue 4 months ago lsh Graphs
B Writing_Setup fixes for issues pointed out by majazaloznik 7 months ago
¥ Settings
B .gitignore Ch5 and 6 edit 2 years ago
[BookMake.R Update BookMake.R 6monthsago | HTTPS clone URL
http. hub. com/chr:
B README.md fixes for issues pointed out by majazaloznik 7 months ago nttps://github. con/chri

You can clone with HTTPS, SSH,
or Subversion. @
README.md

(& Clone in Desktop

<> Download ZIP

Reproducible Research with R and
RStudio

Finally, you can use the status command for details about your reposi-
tory, including uncommitted changes. Generally it’s a good idea to use the -s
(short) option, so that the output is more readable.

Display status
git status -s

Checkout

It is useful to step back for a second and try to understand what Git is doing
when you commit your changes. In the hidden . git, folder Git is saving all of the
information in compressed form from each of your commits into a sub-folder
called objects. Commit objects?® are everything from a particular commit. I
mean everything. If you delete all of the files in your repository (except for the
.git folder) you can completely recover all of the files from your most recent
commit with the checkout command:

250ther Git objects include trees (sort of like directories), tags (bookmarks for important
points in a repo’s history), and blobs (individual files).

Storing, Collaborating, Accessing Files, and Versioning

TABLE 5.1: A Selection of Git Commands

Command Description

add Add a file to a Git repository.

branch Create and delete branches.

checkout Checkout a branch.

clone Clone a repository (for example, the remote
GitHub version) into the current working
directory.

commit Commit changes to a Git repository.

fetch Download objects from the remote (or an-
other) repository.

.gitignore Not a Git command, but a file you can add to
your repository to specify what files/file types
Git should ignore.

init Initialize a Git repository.

log Show a repo’s commit history.

merge Merge two or more commits/branches
together.

pull fetch data from a remote repository and try
to merge it with your commits.

push Add committed changes to a remote Git repos-

remote add

rm

status

tag

itory, i.e. GitHub.

Add a new remote repository to an existing
project.

Remove files from Git version tracking.

Show the status of a Git repository including
uncommitted changes made to files.

Bookmark particularly significant commits.

shell knows what program they are from.

95

Note: when you use these commands in the shell, you will need to precede them with git so the

96 Reproducible Research with R and RStudio Second Edition

FIGURE 5.3: Part of this Book’s GitHub Repository Commit History Page

Commits on Dec 30, 2014

=§‘i‘:\ minor 2 clddbab <>
®ayy christophergandrud

Commits on Dec 29, 2014

% | edited through Ch 4 =

= =2 8431543 O
¥Rugs christophergandrud -

=y Minor B msazzal O
BRuxs christophergandrug

Y proof up to ch2 E 0828bB4 <>
®Ruys christophergandrug

s i =

B Minor B czote26 >
By christophergandrnud

git checkout --

Note that there is a space between the two dashed lines and the period. You
can also change to any other commit or any committed version of a particular
file with checkout. Simply replace the -- with the commit reference. Note
that the period at the end is still very important to include after the commit
reference. The commit reference is easy to find and copy from a repository’s
GitHub webpage (see below for more information on how to create a GitHub
webpage).?6 For an example of a GitHub repo webpage, see Figure 5.2. Click
on the link that lists the number of repo commits on the left-hand side of
the repo’s webpage. This will show you all of the commits. A portion of this
book’s commit history is shown in Figure 5.3. By clicking on the Browse Code

icon () you can see what the files at any commit looked like. Next to this
button is another with a series of numbers and letters. This is the commit’s
SHA-1 hash.?” For our purposes, it is the commit’s reference number. Click
on the Copy SHA button to the left of the SHA to copy it. You can then paste
it as an argument to your git checkout command. This will revert you to
that particular commit. Also include the file name if you want to revert to a
particular version of a particular file.

26You can also search your commit history and roll back to a previous commit using only
the command-line. To see the commit history use the log command (more details at http://
git-scm.com/book/en/Git-Basics-Viewing-the-Commit-History). When a repo has many
commits, this can be a very tedious command to use, so I highly recommend the GUI version
of GitHub or the repo’s GitHub website.

27Secure Hash Algorithm

Storing, Collaborating, Accessing Files, and Versioning 97

Tags

SHA-1 hashes are a bit cumbersome to use as references. What was the hash
number for that one commit? To solve this problem you can add bookmarks,
known as “tags”, to particularly important commits. Imagine we just com-
mitted our first full draft of a project. We want to tag it as version 0.1, i.e.
“v0.1”. To do this use Git’s tag command:

git tag -a v0.1 -m "First draft"

The -a option adds the tag v0.1 and -m lets us add a message. Now we can
checkout this particular commit by using its tag, i.e.:

git checkout vO0.1

This will create a new “branch” with a generic name (detached from v0.1)
where you can make changes and commit them. If you plan to checkout a
previous tagged version and make changes to it, it is a good idea to specifically
name the branch using the -b argument.?® For example, to give it the name
v0.1Branch type:

git checkout vO0.1 -b v0.1Branch

What is a branch?

Branches

Sometimes you may want to work on an alternative version of your project and
then merge changes made to this version back into the main one. For example,
the main version could be the most stable current copy of your research, while
the alternative version could be a place where you test out new ideas. Git
allows you to create a new branch (alternative version of the repo) which can
be merged back into the master (main) branch. To see what branch you are
using type:

281f you don’t, then the new branch will have a “detached head” which will create problems
using the branch in the future.

98 Reproducible Research with R and RStudio Second Edition

Show git branch
git branch

fatal: Not a git repository (or any of the parent directories):

To create a new branch use, simply enough, the branch command. For
example, to create a new branch called Test:

Create Test branch
git branch Test

You can now use checkout to switch to this branch.?? Here is a shortcut for
creating and checking out the branch:

Create and checkout Test branch
git checkout -b Test

The -b (branch) option for checkout creates the new Test branch before
switching to it.

To merge changes you commit in the Test branch to the master, add and
commit your changes, checkout the master branch, then use the merge com-
mand.?°

Add files
git add .

Commit changes to Test branch
git commit -a -m "Commit changes to Test"

Checkout master branch
git checkout master

Merge master and Test branches
git merge Test

29To delete the Test branch use the -d argument, i.e. git branch -d Test.
30 Any uncommitted changes are merged with a branch when it is checked out.

.git

Storing, Collaborating, Accessing Files, and Versioning 99

Note, when you merge a branch you may encounter conflicts in the files that
make it impossible to smoothly merge the files together. Git will tell you what
and where these are; you then need to decide what to keep and what to delete.

Having Git ignore files

There may be files in your repository that you do not want to keep under
version control. Maybe this is because they are very large files or cached
files from knitr or other files that are byproducts of compiling an R LaTeX
document (see Chapter 8). To have Git ignore particular files, simply create
a file called .gitignore.>! You can either put this file in the repository’s parent
directory to create a .gitignore file for the whole repository or in a subdirectory
to ignore files in that subdirectory. In the .gitignore file, add ignore rules by
simply including the names of the files that you want to have Git ignore. For
example, a .gitignore file that is useful for ignoring files that are the byproduct
of compiling an R LaTeX file would look something like this:

*.aux
*.bbl
*.blg
cache/x*
figure/*
*.log
*,pdf
*.gz
*.tex

The asterisk () is a “wildcard” and stands for any character. In other words, it
tells Git to look for files with any name that end with a specified file extension.
This is faster than writing out the full name of every file you want to ignore
individually. It also makes it easy to copy the rules into new repos. You'll
notice the cache/* and figure/* rules. These tell Git to ignore all of the files
in the cache and figure subdirectories. These files are the product of caching
code chunks and creating figures with knitr, respectively.

Git will not ignore files that have already been committed to a repository.
To ignore these files you will first need to remove them from Git with Git’s rm
(remove) command. If you wanted to remove a file called EzxampleProject.tex
from version tracking type:

31Note that like .git, .gitignore files are hidden.

100 Reproducible Research with R and RStudio Second Edition

git rm --cached ExampleProject.tex

Using the —cached argument tells Git not to track the file, but not delete it.
For more information on .gitignore files, see GitHub’s reference page on
the topic at: https://help.GitHub.com/articles/ignoring-files.

5.3.3 Remote storage on GitHub

So far we’ve been using repos stored locally. Let’s now look at how to also
store a repository remotely on GitHub. You can either create a new repository
on GitHub and download (clone) it to your computer or upload (push) an
existing repository to a new GitHub remote repo. In both cases you need to
create a new repository on GitHub.

To create a new repository on GitHub go to your main GitHub account
webpage and click the New repository button. On the next page that ap-
pears, give the repository a name, brief description, and choose whether to
make it public or private. If you want to store an existing repository on GitHub
give it the same name as the one that already exists on your computer. If you
already have files in your local repository do not check the boxes for creating
README.md, LICENSE, and .gitignore files. When you then click Create
Repository you will be directed to the repository’s GitHub webpage.3?

Clone a new remote repository

If you are working with a new repository and do not have an existing version
on your computer you need to “clone” the GitHub repo to your computer. The
repo’s GitHub page contains a button called Clone in Desktop. Clicking this
will open GUI GitHub (if it is installed) and prompt you to specify what direc-
tory on your computer you would like to clone the repository into. You can also
use the clone command in the shell. Imagine that the URL for a repo called
Example Project is https://GitHub.com/USERNAME/ExampleProject.git.
To clone it into the /git_repositories directory type:33

cd /git_repositories/

32Before the repo has any files in it, the webpage will include instructions for how to set
it up on your computer.
33If you are on the repo’s webpage the URL to copy is under HTTPS clone URL.

Storing, Collaborating, Accessing Files, and Versioning 101

git clone https://GitHub.com/USERNAME/ExampleProject.git

Push an existing repository to a new GitHub repo

If you already have a repository with files in it on your computer and
you want to store them remotely in a new GitHub repo, you need
to add the remote repository and push your files to it. Type Git’s
remote add command. For example, if your repository’s GitHub URL is
https://GitHub.com/USERNAME/ExampleProject.git, then type:

cd /git_repositories/ExampleProject

git remote add origin https://GitHub.com/USERNAME/ExampleProject.git

This will tell your local repository where the remote one is. Finally, push the
repository to GitHub:

git push -u origin master

The -u (upstream tracking) option adds a tracking reference for the upstream
(GitHub) repository branches.

Pushing commits to a GitHub repo

Once you have your local repository connected to GitHub you can add new
commits with the push command. For example, if your current working direc-
tory is the Git repo you want to push and you have already added/committed
the changes you want to include in the remote repo, type:

git push origin master

102 Reproducible Research with R and RStudio Second Edition

The origin is simply the remotely stored repository on GitHub and master
is the master branch. You can change this to another branch if you’d like. If
you have not set up password caching®® you will now be prompted to give
your GitHub user name and password.

You can also push your tags to GitHub. To push all of the tags to GitHub
type:

git push --tags

Now on the repo’s GitHub page there will be a Tags section that will allow
you to view and download the files in each tagged version of the repository.

5.3.4 Accessing on GitHub
Downloading into R

In general, the process of downloading data directly into R is similar to what
we saw earlier for loading data from Dropbox Public folders. We can sim-
ply use the source_data command. First we need to find our plain-text
data file’s raw URL. To do this, go to your repository’s GitHub site, nav-
igate to the file you want to load, and click the Raw button on the right
just above the file preview. I have data in comma-separated values format
stored in a GitHub repository.>> The URL for the raw (plain-text) version
of the data is https://raw.githubusercontent.com/christophergandrud/
Disproportionality_Data/master/Disproportionality. csv.36

UrlAddress <- "http://bit.ly/14aSjxB"
UrlAddress <- "https://raw.githubusercontent.com/christophergandrud/Disproportionality_Ds

DispropData <- repmis::source_data(UrlAddress)

Downloading data from: https://raw.githubusercontent.com/christophergandrud/Disproport:
##

SHA-1 hash of the downloaded data file ts:

20a00022bbcf947917878680df85fTb4dcaaf44a

34See https://help.GitHub.com/articles/set-up-git for more details.

35For full information about the disproportionality data set, please see http://
christophergandrud.github.io/Disproportionality_Data/.

361t has been shortened with Bitly in the example.

Storing, Collaborating, Accessing Files, and Versioning 103

names (DispropData)

[1] "country" "iso2c" "year"
[4] "disproportionality"

source_data downloaded the most recent version of the file from the master
branch. As we saw in Section 5.2.2, running source_data gives us a line
beginning ## SHA-1 hash of Note: this SHA-1 hash is different from
the file’s Git commit’s SHA-1 hash we discussed earlier. The source_data
SHA-1 hash is specific to the file, and has nothing to do with Git. We will
look at this hash more in Chapter 6 (Section 6.3.2).

We can actually use source_data to download a particular version of a
file—from a particular Git commit—directly into R. This makes reproducing a
specific result much easier. To do this you just need to use a file’s raw URL
from a particular commit. To find a file’s particular commit raw URL first
click on the file on GitHub’s website. Then click the History button (#*).
This will take you to a page listing all of the file’s versions. Click on the Browse

Code button (¢) next to the version of the file that you want to use. Click
on the Raw button to be taken to the text-only version of the file. Finally, copy
this page’s URL address and use it with source_data.

For example, I have an old version of the disproportionality data. To down-
load it I find this particular version of the file’s URL and use it in source_data:

01dUrlAddress <- pasteO("https://raw.githubusercontent.com/",
"christophergandrud/",
"Disproportionality_Data/",
"1a59d360b36eade3b183d6336a",
"2262df4£9555d1/",
"Disproportionality.csv")

DispropOld <- repmis::source_data(0ldUrlAddress)

In this example I did not shorten the URL, but instead used the paste0
function to paste it together.3” You do not have to do this. I did it here so
that the URL would fit on the printed page. Notice that the URL is the same as

37paste0 is the same as paste, but has the argument sep = "" so that white space is not
placed between the pasted elements.

104 Reproducible Research with R and RStudio Second Edition

before with one exception: instead of master after Disproportionality_Data
we have this strange series of number and letters: 1a59d360b36ea This is
the commit’s SHA-1 hash.

As we will see in Chapter 8 (Section 8.2.3) we can use a very similar process
to easily run source code files in R directly downloaded from GitHub with the
source_url command.

Viewing files

The GitHub web user interface also allows you, your collaborators (see below)
or, if the repo is public, anyone to look at text files from a web browser. Col-
laborators can actually also create, modify, and commit changes in the web
user interface. This can be useful for making small changes, especially from a
mobile device without a Git installation. Anyone with a GitHub account can
suggest changes to files in a public repository on the repo’s website. Simply

click the Edit button (¢) above the file and make edits. If the person mak-
ing the edits is not a designated collaborator, their edits will be sent to the
repository’s owner for approval.3® This can be a useful way for independent
researchers to fix errors.

5.3.4.1 Collaboration with GitHub

Repositories can have official collaborators that can make changes to files in
the repo. Public repositories can have unlimited collaborators. Anyone with a
GitHub account can be a collaborator. To add a collaborator to a repository
you created, click on the Settings button on the repository’s website (see
Figure 5.2). Then click the Collaborators button on the left-hand side of
the page. You will be given a box to enter your collaborator’s GitHub user
name. If your collaborator doesn’t have a GitHub account, they will have to
create a new one. Once you add someone as a collaborator they can clone the
repository onto their computer as you did earlier and push changes.

Syncing a repository

If you and your collaborators are both making changes to the files in a repo you
might create conflicting changes, i.e. different changes to the same part of a
file. To avoid too many conflicts, it is a good idea to sync your local repository
with the remote repository before you push your commits to GitHub. Use
the pull command to sync your local and remote repository. First add and
commit your changes, then type:

38This is called a pull request in Git terminology. See the next section for more details.

Storing, Collaborating, Accessing Files, and Versioning 105

FIGURE 5.4: Creating RStudio Projects

New Project

Create project from:

R New Directory
Start a project in a brand new working directory

Existing Directory
s R,l Associate a project with an existing working directory

& Version Control
Checkout a project from a version control repository

Cancel

git pull

If the files you are pulling conflict with your local files you will probably want
to resolve these in the individual files and commit the changes. When there
are merge conflicts, Git adds both versions of a piece of text to the file. You
then open the file and decide which version to keep and which one to delete.
When the conflicts are resolved and changes committed, push your merged
changes up to the remote repository as we did before.

5.3.5 Summing up the GitHub workflow

We've covered a lot of ground in this section. Let’s sum up the basic GitHub
workflow you will probably follow once your repo is set up.

1. Add any changes you've made with git add.

2. commit the changes.

3. pull your collaborators’ changes from the GitHub repo, resolve any
merge conflicts, and commit the changes.

4. push your changes to GitHub.

106 Reproducible Research with R and RStudio Second Edition

FIGURE 5.5: Creating RStudio Projects in New Directories

New Project

Back Create New Project

Directory name:

i z Create project as subdirectory of:

/git_repositories Browse...

Create a git repository

Use packrat with this project

Open in new window | Create Project | | Cancel
)

5.4 RStudio & GitHub

When you open a Project with a Git repository in RStudio you will see a new
Git tab next to Environment and History (see Figure 5.6). From here you can
do many of the things we covered in the previous section. Let’s look at how
to set up and use Git in RStudio Projects.

5.4.1 Setting up Git/GitHub with Projects

You can Git initialize new RStudio Projects, Git initialize existing projects,
and create RStudio Projects from cloned repos. When you do any of these
things RStudio automatically adds a .gitignore file telling Git to ignore
.Rproj.user, .Rhistory, and .RData files.

Git with a new project

To create a new project with Git version control, go to File in the RStudio
menu bar. Then click New Project.... In the box that appears (see Fig-
ure 5.4) select New Directory —Empty Project. Enter the Project’s name
and desired directory. Make sure to check the dialog box for Create a git
repository (see Figure 5.5).

Storing, Collaborating, Accessing Files, and Versioning 107
FIGURE 5.6: The RStudio Git Tab

(a) New EzampleProject Git Tab

Environment History Git

= Diff = v, Commit DR~ 2 (No branch) =
Staged Status « Path
.gitignore

ExampleProject.Rproj

(b) Adding Changes to the Repository

Environment History Git

= Diff | v Commit DEE - X (No branch) =
Staged Status « Path
v .gitignore
v ExampleProject.Rproj
[w] ExampleScript.R

Git initialize existing projects

If you have an existing RStudio Project and want to add Git version control to
it, first go to Tools in the RStudio menu bar. Then select Project Options
. ... Select the Git/SVN icon. Finally, select Git from the drop-down menu
for Version Control System:.

Clone repository into a new project

Again go to File in the RStudio menu bar to create a new project from a
cloned GitHub repository. Then click New Project.... Select the Version
Control option and then Git. Finally, paste the repository’s URL in the
field called Repository URL:, enter the directory you would like to locate the
cloned repo in, and click Create Project.

Add ezxisting Project repository to GitHub

You can push an existing Project repository stored on your computer to a new
remote repository on GitHub. To do this, first create a new repo on GitHub
with the same name as your RStudio Project (see Section 5.3.3). Then copy
the remote repository’s URL like we saw before when we cloned a repository
from GitHub (see Section 5.3.3). Open a new shell from within RStudio. To
do this, click the Shell button in the G4t tab’s More drop-down menu. Now
follow the same steps that we used in Section 5.3.3 to connect a locally stored
repository to GitHub for the first time.

108 Reproducible Research with R and RStudio Second Edition

5.4.2 Using Git in RStudio Projects

The RStudio Git tab allows you to do many of the same things with Git
that we covered in the previous section. In the top panel of Figure 5.6 you
will see the Git tab for a new RStudio Project called ExampleProject. It has
two files that have not been added or committed to Git. To add and commit
the files to the repository, click on the dialog boxes next to the file names.
In the bottom panel of Figure 5.6 you can see that I've created a new R file
called FzampleScript.R and clicked the dialog box next to it, along with the
other files. The yellow question marks in the top panel have now become green
A’s for “add”. Clicking Commit opens a new window called Review Changes
where you can commit the changes. Simply write a commit message in the box
called Commit Message in the Review Changes window and click Commit.
If you add file names to the .gitignore files, they will not show up in RStudio’s
Git tab.

If you are using a GitHub repo that is associated with a remote reposi-
tory on GitHub, you can push and pull it with the Pull Branches and Push
Branch buttons in Git menu bar (the blue and green arrows, respectively).
You can use the same buttons in the Review Changes window. The Git tab
also allows you to change branches, revert to previous commits, add files to
.gitignore, and view your commit history. You can always use the More -
Shell ... option to open a new shell with the Project set as the working
directory to complete any other Git task you might want to do.

Chapter summary

In this chapter we have primarily learned how to store text-based reproducible
research files in ways that allow us and others to access them easily from many
locations, enable collaboration, and keep a record of previous versions. In the
next chapter we will learn how to use text-based files to reproducibly gather
data that we can use in our statistical analyses.

6
Gathering Data with R

How you gather your data directly impacts how reproducible your research will
be. You should try your best to document every step of your data gathering
process. Reproduction will be easier if your documentation—especially, variable
descriptions and source code—makes it easy for you and others to understand
what you have done. If all of your data gathering steps are tied together
by your source code, then independent researchers (and you) can more easily
regather the data. Regathering data will be easiest if running your code allows
you to get all the way back to the raw data files—the rawer the better. Of
course, this may not always be possible. You may need to conduct interviews or
compile information from paper based archives, for example. The best you can
sometimes do is describe your data gathering process in detail. Nonetheless,
R’s automated data gathering capabilities for internet-based information is
extensive. Learning how to take full advantage of these capabilities greatly
increases reproducibility and can save you considerable time and effort over
the long run.

In this chapter we’ll learn how to gather quantitative data in a fully re-
producible way. We’ll start by learning how to use data gathering makefiles
to organize your whole data gathering process so that it can be completely
reproduced. Then we will learn the details of how to actually load data into
R from various sources, both locally on your computer and remotely via the
internet. In the next chapter (Chapter 7) we’ll learn the details of how to
cleanup raw data so that it can be merged together into data frames that you
can use for statistical analyses.

6.1 Organize Your Data Gathering: Makefiles

Before getting into the details of using R to gather data, let’s start by creating
a plan to organize the process. Organizing your data gathering process from
the beginning of a research project improves the possibility of reproducibility
and can save you significant effort over the course of the project by making it
easier to add and regather data later on.

A key part of reproducible data gathering with R, like reproducible re-
search in general, is segmenting the process into modular files that can all be
run by a common “makefile”. In this chapter we’ll learn how to create make-

109

110 Reproducible Research with R and RStudio Second Edition

like files run exclusively from R as well as GNU Make makefiles,! which you
run from a shell.? Learning how to create R make-like files is fairly easy. Using
GNU Make does require learning some more new syntax. However, it has one
very clear advantage: it only runs a source code file that has been updated
since the last time you ran the makefile. This is very useful if part of your
data gathering process is very computationally and time intensive.

Segmenting your data gathering into modular files and tying them together
with some sort of makefile allows you to more easily navigate research text
and find errors in the source code. The makefile’s output is the data set that
you’ll use in the statistical analyses. There are two types of source code files
that the makefile runs: data gathering/cleanup files and merging files. Data
cleanup files bring raw individual data sources into R and transform them so
that they can be merged together with data from the other sources. Many of
the R tools for data cleanup and merging will be covered in Chapter 7. In this
chapter we mostly cover the ways to bring raw data into R. Merging files are
executed by the makefile after it runs the data gathering/cleanup files.

It’s a good idea to have the source code files use very raw data as input.
Your source code should avoid directly changing these raw data files. Instead
changes should be put into new objects and data files. Doing this makes it
easier to reconstruct the steps you took to create your data set. Also, while
cleaning and merging your data you may transform it in unintended ways,
for example, accidentally deleting some observations that you wanted to keep.
Having the raw data makes it easy to go back and correct your mistakes.

The files for the examples used in this section can be downloaded from
GitHub at: http://bit.1ly/YnMKBG.

6.1.1 R Make-like files

When you create make-like files in R to organize and run your data gathering
you usually only need one or two commands, setwd and source. As we talked
about in Chapter 4, setwd simply tells R where to look for and place files.
source tells R to run code in an R source code file.> Let’s see what an R
data make file might look like for a project with a file structure similar to the
example project in Figure 4.1. The file paths in this example are for Unix-like
systems and the make-like file is called Makefile.R.

LGNU stands for “GNU’s Not Unix”, indicating that it is Unix-like.

2To standardize things, I use the terms “R make-like file” for files created and run in R
and the standard “makefile” for files run by Make.

3We use the source command more in the Chapter 8.

Gathering Data with R 111

setwd ("/ExampleProject/Analysis/Data/")

source("Gather1.R")
source ("Gather2.R")
source("Gather3.R")

source ("MergeData.R")

This code first sets the working directory. Then it runs three source code
files to gather data from three different sources. These files gather the data
and clean it so that it can be merged together. The cleaned data frames are
available in the current workspace. Next the code runs the MergeData.R file
that merges the data frames and saves the output data frame as a CSV for-
matted file. The CSV file could be the main file we use for statistical analysis.
MergeData.R also creates a Markdown file with a table describing the vari-
ables and their sources. We'll come back to how to create tables in Chapter
9.

You can run the commands in this file one by one or run the make-like file
by putting it through the source command so that it will run it all at once.

6.1.2 GNU Make

R make-like files are a simple way to tie together a segmented data gathering
process. If one or more of the source files that our example before runs is
computationally intensive it is a good idea to run them only when they are
updated. However, this can become tedious, especially if there are many seg-
ments. The well-established GNU Make command-line program* deals with
this problem by comparing the output files’ time stamps® to time stamps of
the source files that created them. If a source file has a time stamp that is
newer than its output, Make will run it. If the source’s time stamp is older
than its output, Make will skip it.

4GNU Make was originally developed in 1977 by Stuart Feldman as a way to compile
computer programs from a series of files, its primary use to this day. For an overview see:
http://en.wikipedia.org/wiki/Make_(software). For installation instructions please see
Section 1.5.1.

5A file’s time stamp records the time and date when it was last changed.

112 Reproducible Research with R and RStudio Second Edition

In Make terminology the output files are called “targets” and the files that
create them are called “prerequisites”. You specify a “recipe” to create the
targets from the prerequisites. The recipe is basically just the code you want
to run to make the target file. The general form is:

TARGET ... : PREREQUISITE ...
RECIPE

Note that, unlike in R, tabs are important in Make. They indicate what
lines are the recipe. Make uses the recipe to ensure that targets are newer
than prerequisites. If a target is newer than its prerequisite, Make does not
run the prerequisite.

The basic idea of reproducible data gathering with Make is similar to what
we saw before, with a few twists and some new syntax. Let’s see an example
that does what we did before: gather data from three sources, clean and merge
the data, and save it in CSV format.

6.1.2.1 Example makefile

The first thing we need to do is create a new file called Makefile® and place it
in the same directory as the data gathering files we already have. The makefile
we are going to create runs prerequisite files by the alphanumeric order of their
file names. So we need to ensure that the files are named in the order that we
want to run them. Now let’s look at the actual makefile:

HEHSHHHFHH AR RS

Example Makefile

Christopher Gandrud

Updated 1 July 2013

Influenced by Rob Hyndman (31 October 2012)

See: http://robjhyndman.com/researchtips/makefiles/
HEHSHBHFHH AR HEHR

Key variables to define
RDIR = .
MERGE_OUT = MergeData.Rout

6 Alternatively you can call the file GNUmakefile or makefile.

Gathering Data with R 113

Create list of R source files
RSOURCE = $(wildcard $(RDIR)/*.R)

Files to indicate when the RSOURCE file was run
OUT_FILES = $(RSOURCE: .R=.Rout)

Default target
all: $(OUT_FILES)

Run the RSOURCE files
$ (RDIR)/%.Rout: $(RDIR)/%.R
R CMD BATCH $<

Remove Out Files
clean:
rm -fv $(0UT_FILES)

Remove MergeData.Rout
cleanMerge:
rm -fv $(MERGE_OUT)

Ok, let’s break down the code. The first part of the file defines variables
that will be used later on. For example, in the first line of executable code
(RDIR = .) we create a simple variable” called RDIR with a period (.) as its
value. In Make and Unix-like shells, periods indicate the current directory.
The next line allows us to specify a variable for the outfile created by running
the MergeData.R file. This will be useful later when we create a target for
removing this file to ensure that the MergeData.R file is always run.

The third executed line (RSOURCE:= $(wildcard $(RDIR)/*.R)) creates
a variable containing a list of all of the names of files with the extension .R, i.e.
our data gathering and merge source code files. This line has some new syntax,
so let’s work through it. In Make (and Unix-like shells generally) a dollar sign
($) followed by a variable name substitutes the value of the variable in place of
the name.® For example, $(RDIR) inserts the period . that we defined as the
value of RDIR previously. The parentheses are included to clearly demarcate
where the variable name begins and ends.’

"Simple string variables are often referred to as “macros” in GNU Make. A common
convention in Make and Unix-like shells generally is to use all caps for variable names.

8This is a kind of parameter expansion. For more information about parameter expansion
see Frazier [2008].

9Braces ({}) are also sometimes used for this.

114 Reproducible Research with R and RStudio Second Edition

You may remember the asterisk (*) from the previous chapter. It is a
“wildcard”, a special character that allows you to select file names that follow
a particular pattern. Using *.R selects any file name that ends in .R.

Why did we also include the actual word wildcard? The wildcard func-
tion is different from the asterisk wildcard character. The function creates a
list of files that match a pattern. In this case the pattern is $(RDIR) /*.R. The
general form for writing the wildcard function is: $(wildcard PATTERN).

The third line (OUT_FILES = $(RSOURCE:.R=.Rout)) creates a variable
for the .Rout files that Make will use to tell how recently each R file was
run.'® $(RSOURCE: .R=.Rout) is a variable that uses the same file name as
our RSOURCE files, but with the file extension .Rout.

The second part of the makefile tells Make what we want to create and how
to create it. In the line all: $(OUT_FILES) we are specifying the makefile’s
default target. Targets are the files that you instruct Make to make. all: sets
the default target; it is what Make tries to create when you enter the command
make in the shell with no arguments. We will see later how to instruct Make
to compile different targets.

The next two executable lines ($(RDIR)/%.Rout: $(RDIR)/%.R and
R CMD BATCH $<) run the R source code files in the directory. The first line
specifies that the .Rout files are the targets of the .R files. The percent sign
(%) is another wildcard. Unlike the asterisk, it replaces the selected file names
throughout the command used to create the target.

The dollar and less-than signs ($<) indicate the first prerequisite for the
target, i.e. the .R files. R CMD BATCH is a way to call R from a Unix-like shell,
run source files, and output the results to other files.!! The out-files it creates
have the extension .Rout.

The next two lines specify another target: clean. When you type make
clean into your shell Make will follow the recipe: rm -fv $(0UT_FILES).
This removes (deletes) the .Rout files. The f argument (force) ignores files
that don’t exist and the v argument (verbose) instructs Make to tell you what
is happening when it runs. When you delete the .Rout files, Make will run all
of the .R files the next time you call it.

The last two lines help us solve a problem created by the fact that our
simple makefile doesn’t push changes downstream. For example, if we make
a change to Gather2.R and run make, only Gather2.R will be rerun. The new
data frame will not be added to the final merged data set. To overcome this
problem the last two lines of code create a target called cleanMerge, this
removes only the MergeData. Rout file.

10The R out-file contains all of the output from the R session used while running the file.
These can be a helpful place to look for errors if your makefiles give you an error like make:
x [Gather.Rout] Error 1.

11You will need to make sure that R is in your PATH. Setting this up is different on
different systems. If on Mac and Linux you can load R from the Terminal by typing R, R is
in your PATH. The usual R installation usually sets this up correctly. There are different
methods for changing the file path on different versions of Windows.

Gathering Data with R 115

Running the Makefile

To run the makefile for the first time, simply change the working directory to
where the file is and type make into your shell. It will create the CSV final data
file and four files with the extension .Rout, indicating when the segmented
data gathering files were last run.'?

When you run make in the shell for the first time you should get the output:

R CMD BATCH Gatherl.R
R CMD BATCH Gather2.R
R CMD BATCH Gather3.R
R CMD BATCH MergeData.R

If you run it a second time without changing the R source files you will get
the following output:

make: Nothing to be done for 'all'.

To remove all of the .Rout files, set the make target to clean:

make clean

rm -fv ./Gatherl.Rout ./Gather2.Rout ./Gather3.Rout
./MergeData.Rout

./Gatherl.Rout

./Gather2.Rout

./Gather3.Rout

./MergeData.Rout

If we run the following code:

121f you open these files you fill find the output from the R session used when their source
file was last run.

116 Reproducible Research with R and RStudio Second Edition
FIGURE 6.1: The RStudio Build Tab

Environment History Build Git
Build All | {gF More~

R CMD BATCH Gatherl.R
R CMD BATCH Gather2.R
R CMD BATCH Gather3.R
R CMD BATCH MergeData.R

make cleanMerge all

then Make will first remove the MergeData. Rout file (if there is one) and then
run all of the R source files as need be. MergeData.R will always be run. This
ensures that changes to the gathered data frames are updated in the final
merged data set.

6.1.2.2 Makefiles and RStudio Projects

You can run makefiles from RStudio’s Build tab. For the type of makefile we
have been using, the main advantage of running it from within RStudio is
that you don’t have to toggle between RStudio and the shell. Everything is in
one place. Imagine that the directory with our makefile is an RStudio Project.
If a Project already contains a makefile, RStudio will automatically open a
Build tab on the Environment/History pane, the same place where the Git
tab appears (see Figure 6.1).13

The Build tab has buttons you can click to Build All (this is equivalent to
make all), and, in the More drop-down menu, Clean all (i.e. make clean)
and i.e. Clean and Rebuild (make clean all). As you can see in Figure
6.1, the Tab shows you the same output you get in the shell.

6.1.2.3 Other information about makefiles

Note that Make relies heavily on commands and syntax of the shell program
that you are using. The above example was written and tested on a Mac. It
should work on other Unix-like computers without modification.

You can use Make to build almost any project from the shell, not just

131f a project doesn’t have a makefile you can still set up RStudio Build. Click on Build
in the Menu bar then Configure Build Tools Select Makefile from the drop-down
menu then 0k. You will still need to manually add a Makefile in the Project’s root directory.

Gathering Data with R 117

run R source code files. It was an integral part of early reproducible compu-
tational research [Fomel and Claerbout, 2009, Buckheit and Donoho, 1995].
Rob Hyndman more recently posted a description of the makefile he uses
to create a project with R and LaTeX.'* The complete source of informa-
tion on GNU Make is the official online manual. It is available at: http:
//www.gnu.org/software/make/manual/.

6.2 Importing Locally Stored Data Sets

Now that we’ve covered the big picture, let’s learn the different tools you
will need to know to gather data from different types of sources. The most
straightforward place to load data from is a local file, e.g. one stored on your
computer. Though storing your data locally does not really encourage repro-
ducibility, most research projects will involve loading data this way at some
point. The tools you will learn for importing locally stored data files will also
be important for most of the other methods further on.

Data stored in plain-text files on your computer can be loaded into R using
the read.table command. For example, imagine we have a CSV file called
TestData.csv stored in the current working directory. To load the data set into
R simply type:

TestData <- read.table("TestData.csv", sep = ",", header = TRUE)

See Section 5.2.2 for a discussion of the arguments in this command.

If you are using RStudio you can do the same thing with drop-down menus.
To open a plain-text data file click on Environment — Import Dataset... —
From Text File.... In the box that pops up, specify the column separator,
whether or not you want the first line to be treated as variable labels, and
other options. This is initially easier than using read.table. But it is much
less reproducible.

If the data is not stored in plain-text format, but is instead saved in a
format created by another statistical program such as SPSS, SAS, or Stata,
we can import it using commands in the foreign package. For example, imagine
we have a data file called Datal.dta stored in our working directory. This file
was created by the Stata statistical program. To load the data into an R data
frame object called StataData simply type:

14See his blog at: http://robjhyndman.com/researchtips/makefiles/. Posted 31 Octo-
ber 2012. This method largely replicates what we do in this book with knitr. Nonetheless,
it has helpful information about Make that can be used in other tasks. It was in fact helpful
for writing this section of the book.

118 Reproducible Research with R and RStudio Second Edition

library(foreign)

StataData <- read.dta(file = "Datal.dta")

As you can see, commands in the foreign package have similar syntax to
read.table. To see the full range of commands and file formats that the
foreign package supports, use the following command:

library(help = "foreign")

If you have data stored in a spreadsheet format such as Excel’s .zlsz, it
may be best to first cleanup the data in the spreadsheet program by hand
and then save the file in plain-text format. When you cleanup the data make
sure that the first row has the variable names and that observations are in
the following rows. Also, remove any extraneous information such as notes,
colors, and so on that will not be part of the data frame.

To aid reproducibility, locally stored data should include careful docu-
mentation of where the data came from and how, if at all, it was transformed
before it was loaded into R. Ideally, the documentation would be written in a
text file saved in the same directory as the raw data file.

6.3 Importing Data Sets from the Internet

There are many ways to import data that is stored on the internet directly
into R. We have to use different methods depending on where and how the
data is stored.

6.3.1 Data from non-secure (http) URLs

Importing data into R that is located at a non-secure URL!®-ones that start
with http—is straightforward provided that:

o the data is stored in a simple format, e.g. plain-text,

e the file is not embedded in a larger HTML website.

15URL stands for “Uniform Resource Locator?.

Gathering Data with R 119

We already discussed the first issue in detail. You can determine if the data file
is embedded in a website by opening the URL in your web browser. If you only
see the raw plain-text data, you are probably good to go. To import the data,
simply include the URL as the file’s name in your read.table command.

6.3.2 Data from secure (https) URLs

Storing data at non-secure URLs is becoming less common. Services like Drop-
box and GitHub now store their data at secure URLs.'® You can tell if the
data is stored at a secure web address if it begins with https rather than
http. We have to use different commands to download data from secure
URLSs. Let’s look at three methods for downloading data into R: source_data,
source_DropboxData, and the RCurl package.

Loading data from secure URLs with source_data

As we saw in Chapter 5, we can use the source_data command in the repmis
package to simplify the process of downloading data from Dropbox Public
folders (Section 5.2.2) and GitHub (Section 5.3.4). You can use source_data
to download data in plain-text format from almost any URL, as long as the
file is not embedded in a larger HTML website.

One problem for reproducible research with sourcing data located on the
internet is that data files may change without us knowing. This could change
the results we get. Luckily, we can solve this problem with source_data. In
Chapter 5 we saw that when we run the source_data command we not only
download a data file, but also find its SHA-1 hash. The SHA-1 hash is basically
a unique number for the file. If the file changes, its SHA-1 hash will change.
Once we know the file’s SHA-1 hash we can use source_data’s shal argument
to make sure the file that we downloaded is the same as the one we intended
to download.

For example, let’s find the SHA-1 hash for the disproportionality data set
we downloaded in the last chapter (Section 5.3.4):17

UrlAddress <- "https://raw.githubusercontent.com/christophergandrud/Disproportionality_Data/master/
DispropData <- repmis::source_data(UrlAddress)

Downloading data from: https://raw.githubusercontent.com/christophergandrud/Disproportionality_Da
##

SHA-1 hash of the downloaded data file is:

20a0b022bbcf947917878680df85fTb4dcaafi4a

16Dropbox used to host files in the Public folder at non-secure URLs, but switched to
secure URLs.
17Remember we placed the file’s raw GitHub URL address inside of the object UrlAddress.

120 Reproducible Research with R and RStudio Second Edition

You can see that the file’s SHA-1 hash begins 20a0v022bbcf Let’s see
what happens when we try to download an older version of the same file while
placing this SHA-1 hash in source_url’s shal argument. The URL of the
alternative version of the file is in the object OldUrlAddress:'®

01dUrlAddress <- "https://raw.githubusercontent.com/christophergandrud/Disproportionality_Data/master/Dispropo

DispropData <- repmis::source_data(0ldUrlAddress,
shal = "20a0b022bbcf947917878680df85f7b4dcaafd4a")

If we set the shal argument in our replication files, others can be sure that
they are using the same data files that we used to generate a particular result.
It may not be practical to do this while a piece of research is under active
development, as the files may be regularly updated. However, it can be very
useful for source code files that underlie published results.

Loading data from Dropbox non-Public folders with source_DropboxData

Files stored on Dropbox non-Public folders are a little trickier to download. If
you go to the Dropbox website and click the Share Link button next to a file

(1) you will be given an information box. This is not the raw data file.
Luckily, repmis includes a source_DropboxData command for downloading
data stored in a non-Public Dropbox folder into R. It works in much the same
way as source_data, the only difference is that instead of using the URL we
need (a) the file’s name and (b) its Dropbox key.

To find the file’s key simply click on the Share Link button next
to the file on the Dropbox website. Look at the URL for the webpage
that appears. Here’s an example: https://dl.dropboxusercontent.com/s/
exh4iobbm2p5plv/fin_research_note.csv

You can see that the last part of the URL (fin_research_note.csv)
is the data file’s name. The key is the string of letters and numbers
just after https://www.dropbox.com/s/, i.e. exhdiobbm2p5plv. Now that
we have the file name and key we can download the data into R using
source_DropboxData. For example:

FinDataFull <- repmis::source_DropboxData("fin_research_note.csv",
"exh4iobbm2p5plv",
sep = ",", header = TRUE)

18See Section 5.3.4 for the full URL.

Gathering Data with R 121

Loading data using RCurl

A more laborious way to download data from a secure URL that does not rely
on repmis is to use the getURL command in the RCurl package [Temple Lang
and the CRAN team, 2015] as well as read.table and textConnection. The
latter commands are in base R. The two rules about data being stored in plain
text-formats and not being embedded in a larger HTML website apply to this
method as well.

Let’s try an example. To download the data file we used in Section 5.3.4
into R we could use this code:

UrlAddress <- pasteO("https://raw.githubusercontent.com/",
"christophergandrud/Disproportionality",
"_Data/master/Disproportionality.csv")

DataUrl <- RCurl::getURL(UrlAddress)

DispropData <- read.table(textConnection(DataUrl),
sep = ",", header = TRUE)

names (DispropData)

[1] "country" "iso2c" "year"
[4] "disproportionality"

If running getURL(UrlAddress) gives you an error about an SSL
certificate problem simply add the argument ssl.verifypeer = FALSE.
This allows you to skip certification verification and access the data.'®

6.3.3 Compressed data stored online

Sometimes data files are large, making them difficult to store and download
without compressing them. There are a number of compression methods such
as Zip and Tar.?° Zip files have the extension .zip and Tar files use extensions
such as .tar and .gz. In most cases?! you can download, decompress, and

9For more details see the RCurl help page at http://www.omegahat.org/RCurl/FAQ.
html.

20Tar archives are sometimes referred to as ‘tar balls’.

21Some formats that require the foreign package to open are more difficult. This is because
functions such as read.dta for opening Stata .dta files only accept file names or URLs as
arguments, not connections, which you create for unzipped files.

122 Reproducible Research with R and RStudio Second Edition

create data frame objects from these files directly in R. To do this you need
t0:22

e create a temporary file with tempfile to store the zipped file, which you
will later remove with the unlink command at the end,

¢ download the file with download.file,
« decompress the file with one of the connections commands in base R,

o read the file with read.table.

The reason that we have to go through so many extra steps is that compressed
files are more than just a single file and contain a number of files as well as
metadata.

Let’s download a compressed file called uds summary.csv from Pemstein
et al. [2010]. It’s in a compressed file called uds__summary.csv.gz. At the time
of writing, the file’s URL address ishttp://www.unified-democracy-scores.
org/files/20140312/z/uds_summary.csv.gz.

URL <- "http://www.unified-democracy-scores.org/files/20140312/z/uds_summary.csv.gz"
temp <- tempfile()

download.file(URL, temp)

UDSData <- read.csv(gzfile(temp, "uds_summary.csv"))

unlink(temp)

names (UDSData)

[1] "country" "year" "cowcode" "mean" "sd" "median" "pct025"
[8] "pct975"

22The description of this process is based on a Stack Overflow comment
by Dirk Eddelbuettel (see http://stackoverflow.com/questions/3053833/
using-r-to-download-zipped-data-file-extract-and-import-data?answertab=votes\
#tab-top, posted 10 June 2010.)

23To find a full list of commands type ?connections into the R console.

Gathering Data with R 123

6.3.4 Data APIs & feeds

There are a growing number of packages that can gather data directly from
a variety of internet sources and import them into R. Most of these packages
use the sources’ web application programming interfaces (API). Web APIs
allow programs to interact with a website. Needless to say, this is great for
reproducible research. It not only makes the data gathering process easier as
you don’t have to download many Excel files and fiddle around with them
before even getting the data into R, but it also makes replicating the data
gathering process much more straightforward and makes it easy to update
data sets when new information becomes available. Some examples of these
packages include:

o The openair package [Carslaw and Ropkins, 2015], which beyond providing a
number of tools for analyzing air quality data also has the ability to directly
gather data directly from sources such as Kings College London’s London
Air (http://www.londonair.org.uk/) database.

o The quantmod package [Ryan, 2015] allows you to access data from Google
Finance,?* Yahoo Finance,?® and the US Federal Reserve’s FRED?% eco-
nomic database.

o The treebase package by Boettiger and Temple Lang [2012] allows you to
access phylogenetic data from TreeBASE.2”

o The twitteR package [Gentry, 2015] accesses Twitter’s?® APIL. This allows
you to download data from Twitter including tweets and trending topics.

o The WDI package [Arel-Bundock, 2013] allows you to directly download
data from the World Bank’s Development Indicators database.?? This
database includes numerous country-level economic, health, and environ-
ment variables.

o The rOpenSci®® group has and is developing a number of packages for access-
ing scientific data from web-based sources with R. They have a comprehen-
sive set of packages for accessing biological data and academic journals. For
a list of their packages see: http://ropensci.org/packages/index.html.

« Stack Exchange’s Cross Validated website3! also has a fairly comprehensive
and regularly updated list of APIs accessible from R packages.

24nttp: //www.google. com/finance

25http://finance.yahoo.com/

26nttp: //research.stlouisfed.org/fred2/

2"http://treebase.org

28https://twitter.com/

29nttp://data.worldbank.org/data-catalog/world-development-indicators

30http://ropensci.org/

3lhttp://stats.stackexchange.com/questions/12670/
data-apis-feeds-available-as-packages-in-r

124 Reproducible Research with R and RStudio Second Edition

API Package Example: World Bank Development Indicators

Each of these packages has its own syntax and it isn’t possible to go over
all of them here. Nonetheless, let’s look at an example of accessing World
Bank data with the WDI to give you a sense of how these packages work.
Imagine that we want to gather data on fertilizer consumption. We can use
WDI’s WDIsearch command to find fertilizer consumption data available at
the World Bank:

library (WDI)

WDIsearch("fertilizer consumption")

indicator

[1,] "AG.CON.FERT.MT"

[2,] "AG.CON.FERT.PT.ZS"
[3,] "AG.CON.FERT.ZS"

name

[1,] "Fertilizer consumption (metric tons)"

[2,] "Fertilizer consumption (% of fertilizer production)"

[3,] "Fertilizer consumption (kilograms per hectare of arable land)"

This shows us a selection of indicator numbers and their names.3? Let’s gather
data on countries’ fertilizer consumption in kilograms per hectare of arable
land. The indicator number for this variable is: AG.CON.FERT.ZS. We can
use the command WDI to gather the data and put it in an object called Fert-
ConsumpData.

FertConsumpData <- WDI(indicator = "AG.CON.FERT.ZS")

The data we downloaded looks like this:

head (FertConsumpData)

iso2c country AG.CON.FERT.ZS year

32You can also search the World Bank Development Indicators website. The indicator
numbers are at the end of each indicator’s URL.

Gathering Data with R 125

1 1A Arab World 74.26643 2011
2 1A Arab World 61.26674 2010
3 1A Arab World 58.08116 2009
#i# 4 1A Arab World 64.87818 2008
5 1A Arab World 61.65731 2007
6 1A Arab World 59.43073 2006

You can see that WDI has downloaded data for four variables: iso2c,?* coun-
try, AG.CON.FERT.ZS and year.

6.4 Advanced Automatic Data Gathering:
Web Scraping

If a package does not already exist to access data from a particular website,
there are other ways to automatically “scrape” data with R. This section
briefly discusses some of R’s web scraping tools and techniques to get you
headed in the right direction to do more advanced data gathering.

The general process

Simple web scraping involves downloading a file from the internet, parsing it
(i.e. reading it), and extracting the data you are interested in then putting
it into a data frame object. We already saw a simple example of this when
we downloaded data from the a secure HTTPS website. We downloaded a
website’s content from a URL address into R with the getURL command. We
then parsed the downloaded text as a CSV formatted data file, extracted it,
and put it into a new data frame object.

This was a relatively simple process, because the webpage was very sim-
ply formatted. It basically only contained the CSV formatted text. So, the
process of parsing and extracting the data was very straightforward. You may
not be so lucky with other data sources. Data may be stored in an HTML
formatted table within a more complicated HTML marked up webpage. The
XML package [Temple Lang and the CRAN Team, 2015] has a number of use-
ful commands such as readHTMLTable for parsing and extracting this kind of
data. The XML package also clearly has functions for handling XML format-
ted data.?* In addition, the helpful rvest [Wickham, 2015b] package provides
an easy to use set of functions with capabilities similar to and often more

33These are the countries’ or regions’ International Standards Organization’s two-letter
codes. For more details see: http://www.iso.org/iso/country_codes.htm.
34X ML stands for “Extensible Markup Language”.

126 Reproducible Research with R and RStudio Second Edition

capable than XML. If the data is stored in JSON35 you can read it with the
rjson [Couture-Beil, 2014] or RJSONIO [Temple Lang, 2014] packages.

There are more websites with APIs than R packages designed specifically
to access each one. If an API is available, the httr package [Wickham, 2015a]
may be useful. It is a wrapper for RCurl intended to make accessing APIs
easier.

More tools to learn for web scraping

Beyond learning about the various R packages that are useful for R web scrap-
ing, an aspiring web scraper should probably invest time learning a number
of other skills:

e HTML: Obviously you will encounter a lot of HTML markup when web
scraping. Having a good understanding of the HTML markup language will
be very helpful. W3 Schools (http://www.w3schools.com/) is a free re-
source for learning HTML as well as JSON, JavaScript, XML, and other
languages you will likely come across while web scraping.

¢ Regular Expressions: Web scraping often involves finding character patterns.
Some of this is done for you by the R packages above that parse text.
There are times, however, when you are looking for particular patterns, like
tag IDs, that are particular to a given website and change across the site
based on a particular pattern. You can use regular expressions to deal with
these situations. R has a comprehensive if bare-bones introduction to regular
expressions. To access it type Pregex into your R console.

o Looping: Web scraping often involves applying a function to multiple things,
e.g. tables or HTML tags. To do this in an efficient way you will need to use
loops and apply functions. Matloff [2011] provides a comprehensive overview.
The dplyr [Wickham and Francois, 2015] for data frame manipulation is also
particularly useful.

Finally, Munzert et al. [2015] provide a comprehensive overview of web scrap-
ing and text mining with R.

Chapter summary

In this chapter we have learned how to reproducibly gather data from a num-
ber of sources. If the data we are using is available online we may be able
to create really reproducible data gathering files. These files have commands
that others can execute with makefiles that allow them to actually regather
the exact data we used. The techniques we can use to gather online data also
make it easy to update our data when new information becomes available. Of

35JSON means “JavaScript Object Notation”

Gathering Data with R 127

course, it may not always be possible to have really reproducible data gath-
ering. Nonetheless, you should always aim to make it clear to others (and
yourself) how you gathered your data. In the next chapter we will learn how
to clean and merge multiple data files so that they can easily be used in our
statistical analyses.

7

Preparing Data for Analysis

Once we have gathered the raw data that we want to include in our statistical
analyses we generally need to clean it up so that it can be merged into a
single data file. In this chapter we will learn how to create the data gather and
merging files we saw in the last chapter. The chapter also includes information
on recoding and transforming variables. This is important for merging data
and will be useful information in later chapters as well. If you are very familiar
with data transformations in R you may want to skip to the next chapter.

7.1 Cleaning Data for Merging

In order to successfully merge two or more data frames we need to make
sure that they are in the same format. Let’s look at some of the important
formatting issues and how to reformat your data frames so that they can be
easily merged.

7.1.1 Get a handle on your data

Before doing anything to your data it is a good idea to take a look at it and
see what needs to be done. Taking a little time to become acquainted with
your data will help you avoid many error messages and much frustration.

You could type a data frame object’s name into the R console. This will
print the entire data frame in your console. For data frames with more than a
few variables and observations this is very impractical. We have already seen
a number of commands that are useful for looking at parts of your data. As
we saw in Chapter 3, the names command shows you the variable names in
a data frame object. The head command shows the names plus the first few
observations in a data frame. The tail shows the last few.

Use the dim (dimensions) command to quickly see the number of observa-
tions and variables (the number of rows and columns) in a data frame object.
For example, let’s use the FertConsumpData object we created in Chapter 6
to test out dim:

129

130 Reproducible Research with R and RStudio Second Edition

dim(FertConsumpData)

[1] 1743 4

The first number is the number of rows in the data frame (1743) and the
second is the number of columns (4). You can also use the nrow command to
find just the number of rows and ncol to see only the columns.

The summary command is especially helpful for seeing basic descriptive
statistics for all of the variables in a data frame and also the variables’ types.
Here is an example:

summary (FertConsumpData)

iso2c country AG.CON.FERT.ZS year

Length:1743 Length:1743 Min. : 0.00 Min. :2005
Class :character Class :character 1st Qu.: 18.77 1st Qu.:2006
Mode :character Mode :character Median : 85.42 Median :2008
Mean : 240.43 Mean :2008
3rd Qu.: 169.78 3rd Qu.:2010
Max. :16532.31 Max. 12011
NA's 1436

We can immediately see that the variables iso2c and country are character
strings. Because summary is able to calculate means, medians, and so on for
AG.CON.FERT.ZS and year, we know they are numeric. Have a look over
the summary to see if there is anything unexpected like lots of missing values
(NA’s) or unusual maximum and minimum values. You can Of course, run
summary on a particular variable by using the component selector ($):

summary (FertConsumpData$AG.CON.FERT.ZS)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 18.77 85.42 240.40 169.80 16530.00 436

We'll come back to why knowing this type of information is important for
merging and data analysis later in this chapter.
Another important command for quickly summarizing a data frame is

Preparing Data for Analysis 131

table. This creates a contingency table with counts of the number of obser-
vations per combination of factor variables.

You can view a portion of a data frame object with the View function.
This will open a new window that lets you see a selection of the data frame.
If you are using RStudio, you can click on the data frame in the Environment
tab and you will get something similar. Note that neither of these viewers are
interactive in that you can’t use them to manipulate the data. They are only
data viewers. To be able to see similar windows that you can interactively
edit, use the fix function in the same way that you use View. This can be
useful for small edits, but remember that the edits are not reproducible.

7.1.2 Reshaping data

Obviously it is usually a good idea if your data sets are kept in data frame
type objects. See Chapter 3 (Section 3.1.1) for how to convert objects into data
frames with the data.frame command. Not only do data sets (generally) need
to be stored in data frame objects, they also need to have the same layout
before they can be merged. Most R statistical analysis tools assume that your
data is in “long” format.! This usually means that data frame columns are
variables and rows are specific observations (see Table 7.1).

TABLE 7.1: Long Formatted Data Example

Subject Variablel

Subject1
Subject2
Subject3

In this chapter we will mostly use examples of time-series cross-sectional data
(TSCS) that we want to have in long-format. Long formatted TSCS data is
simply a data frame where rows identify observations of a particular subject at
particular points in time and there are multiple observations per subject (see
Table 7.2). In this chapter our TSCS data is specifically going to be countries
that are observed in multiple years.

If one of our raw data sets is not in this format then we will need to reshape
or, using Wickham’s [2014c] terminology, “tidy” it. Some data sets are in
“wide” format, where one of the columns in what would be long formatted data

LFor an excellent discussion of ideal data formats see Wickham [2014c].

132 Reproducible Research with R and RStudio Second Edition

TABLE 7.2: Long Formatted Time-Series Cross-Sectional Data Example

Subject Time Variablel

Subject1 1
Subject1 2
Subject1 3
Subject2 1
Subject2 2
Subject2 3

is widened to cover multiple columns. This is confusing to visualize without
an example. Table 7.3 shows how Table 7.2 looks when we widen the time
variable.

TABLE 7.3: Wide Formatted Data Example

Subject Timel Time2 Time3

Subject1
Subject2

Tidying data is often the cause of much confusion and frustration. Though
probably never easy, there are a number of useful R functions for changing data
from wide format to long and vice versa. These include the matrix transpose
command (t)? and the reshape command, both are loaded in R by default.
tidyr [Wickham, 2014a] is a very helpful package for reshaping data. This
provides more general tools for reshaping data and is worth investing some
time to learn well. In this section we will look at tidyr’s gather function and
use it to reshape a TSCS data frame from wide to long format. We will also

2See this example by Rob Kabacoff: http://www.statmethods.net/management/
reshape.html. Note also that because the matrix transpose function is denoted with t,
you should not give any object the name t.

Preparing Data for Analysis 133

encounter this function again in Chapter 10 when we want to transform data
so that it can be graphed.

For illustration let’s imagine that the fertilizer consumption data we pre-
viously downloaded from the World Bank is in wide, rather than long, format
and is in a data frame object called SpreadFert. It looks like this:?

head (SpreadFert[, 1:5])

iso2c country 2005 2006 2007
1 AF Afghanistan 4.240359 6.290993 3.618809
##t 2 AL Albania 111.596654 85.092466 87.167820
3 DZ Algeria 7.429903 13.262651 14.961575
##t 4 AS American Samoa NA NA NA
5 AD Andorra NA NA NA
6 AQ Angola 2.260606 3.660000 3.305000

We can use the gather command to reshape this data from wide to long
format. The term “gather” is intended to evoke an image of the many wide
columns being gathered together.*

Let’s think about how we want to tidy the data. We want to create two new
columns from the many columns that are now labeled by year. Let’s call the
new columns Year and Fert. The Year column will clearly contain the year
of each observation and Fert will contain the fertilizer consumption. Year
will be what gather calls the “key” and Fert is the “value”. In our SpreadFert
data we don’t want the iso2c and country variables to be gathered. These
variables identify the data set’s subjects. So we can tell gather that we only
want columns three through nine gathered. The third column is the first one
we want to gather and the ninth—the final column in the data set—is the last.

GatheredFert <- gather(SpreadFert, Year, Fert, 3:6)

head (GatheredFert)

iso2c country 2009 2010 2011 Year Fert

3See the chapter’s Appendix (page 148) for the code I used to reshape the data from
long to wide format.

4The opposite spread function is supposed to evoke an image of spreading out the data
from long to wide format. See Chapter Appendix for an example using the spread command.

134 Reproducible Research with R and RStudio Second Edition

1 AF Afghanistan
2 AL Albania
3 DZ Algeria
4 AS American Samoa
5 AD Andorra
6 AQ Angola

4.521494
89.385878
13.986654

NA
NA
5.472250

7.1.3 Renaming variables

4.255518
83.309904
19.481472

NA
NA
8.430000

6.331023
95.353698
17.485071

NA
NA
8.167872

2005
2005
2005
2005
2005
2005

4.240359
111.596654
7.429903
NA

NA
2.260606

Frequently, in the data cleaning process we want to change the names of our
variables. This will make our data easier to understand and may even be
necessary to properly combine data sets (see below). In the previous example,
for instance, our GatheredFert data frame has two variables—Year and Fert.
Imagine, for the sake of demonstration, that we want to rename them year and
FertilizerConsumption. Renaming data frame variables is straightforward
with the rename command in the dplyr package [Wickham and Francois, 2015].
To rename both variable and value with the rename command type:

GatheredFert <- rename(GatheredFert,

year =

Year,

FertilizerConsumption = Fert)

Show GatheredFert

head (GatheredFert)

#i# iso2c country
1 AF Afghanistan
2 AL Albania
3 DZ Algeria
4 AS American Samoa
5 AD Andorra
6 AOD Angola
FertilizerConsumption
1 4.240359
2 111.596654
3 7.429903
4 NA
5 NA
6 2.260606

2009
4.521494
89.385878
13.986654
NA

NA
5.472250

2010
4.255518
83.309904
19.481472
NA

NA
8.430000

2011
6.331023
95.353698
17.485071
NA

NA
8.167872

year
2005
2005
2005
2005
2005
2005

Preparing Data for Analysis 135

7.1.4 Ordering data

You may have noticed that as a result of gathering SpreadFert the data is now
ordered by year rather than country name. Typically, TSCS data is sorted by
country then year, or more generally: subject-time. Though not required for
merging in R,® some statistical analyses assume that the data is ordered in a
specific way. Well-ordered data is also easier for people to read.

We can order observations in our data set using the order command. For
example, to order GatheredFert by country-year we type:

Order GatheredFert by country-year
GatheredFert <- GatheredFert [order(GatheredFert$country,
GatheredFert$year),]

Show GatheredFert

head (GatheredFert)

#H# iso2c country 2009 2010 2011 year
1 AF Afghanistan 4.521494 4.255518 6.331023 2005
250 AF Afghanistan 4.521494 4.255518 6.331023 2006
499 AF Afghanistan 4.521494 4.255518 6.331023 2007
748 AF Afghanistan 4.521494 4.255518 6.331023 2008
2 AL Albania 89.385878 83.309904 95.353698 2005
2561 AL Albania 89.385878 83.309904 95.353698 2006
#i# FertilizerConsumption

1 4.240359

250 6.290993

499 3.618809

748 2.988068

2 111.596654

2561 85.092466

dplyr has a function called arrange that can also be useful for ordering
your data. arrange’s syntax is much cleaner and easier to remember for data
frames than the operation we did with order. To arrange the GatheredFert
data as in the previous example, but with arrange use:

GatheredFert <- arrange(GatheredFert, country, year)

5Unlike in other statistical programs.

136 Reproducible Research with R and RStudio Second Edition

FIGURE 7.1: Density Plot of Fertilizer Consumption (kilograms per hectare
of arable land)

0.004 -

> 0.003-

G

&

8 0.002-
0.001 -
0.000 - L

]]]]
0 5000 10000 15000

Fertilizer Consumption

See the chapter’s Appendix for the source code to create this figure.

To arrange a variable in descending order, simply place it in the desc
function from dplyr, e.g. arrange (GatheredFert, country, desc(year)).

7.1.5 Subsetting data

Sometimes you may want to use only a subset of a data frame. For example,
the density plot in Figure 7.1 shows us that the GatheredFert data has a
few very extreme values. We can use the subset command to examine these
outliers, for example, countries that have fertilizer consumption greater-than
1000 kilograms per hectare.

FertOutliers <- subset(x = GatheredFert,
FertilizerConsumption > 1000)

head (FertOutliers)

iso2c country 2009 2010 2011 year
61 BH Bahrain 947.79412 1660.6250 1178.1250 2005

Preparing Data for Analysis 137

62 BH Bahrain 947.79412 1660.6250 1178.1250 2006
64 BH Bahrain 947.79412 1660.6250 1178.1250 2008
193 CR Costa Rica 720.48696 522.0213 661.3520 2005
443 Jo Jordan 394.86056 187.7196 1227.5911 2007
469 KW Kuwait 57.14286 884.0000 971.8095 2005
FertilizerConsumption
61 2906.667
62 9436.552
64 1993.333
193 1029.920
443 1007.783
469 4349.091

If we want to drop these outliers from our data set we can use subset again.

GatheredFertSub <- subset(x = GatheredFert,
FertilizerConsumption <= 1000)

In this data example, non-country units like “Arab World” are included.
We might want to drop these units with the subset function as well. For
example:

Drop Arab World type from GatheredFertSub
GatheredFertSub <- subset(x = GatheredFertSub,
country != "Arab World")

We can also use subset to remove observations with missing values (NA) for
FertilizerConsumption.

Remove observations of FertilizerConsumption

with missing values

GatheredFertSub <- subset(x = GatheredFertSub,
lis.na(FertilizerConsumption))

Summarize FertilizerConsumption
summary (GatheredFertSub$FertilizerConsumption)

138 Reproducible Research with R and RStudio Second Edition

TABLE 7.4: R’s Logical Operators

Operator Meaning

< less-than

> greater-than

== equal to

<= less-than or equal to

>= greater-than or equal to
1= not equal to

alb aorb

a&b a&b

isTRUE(a) determine if a is TRUE

is.na missing

lis.na not missing

duplicated duplicated observation
!duplicated not a duplicated observation

#it Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 15.41 85.20 121.80 157.30 939.80

Let’s step back one second. I've introduced a number of new logical oper-
ators and a new function in the four subsetting examples. The first example
included a very simple one, the greater-than sign (>). The second example
included the less-than or equal to operator: <=. The third example included
the not equal operator: !=. In R, exclamation points (!) generally denote
‘not’. We used this again in the final example in combination with the is.na
command. This command indicates if an element is missing, so !is.na means
“not missing”. For a list of R’s logical operators, see Table 7.4. You can use
these operators and functions when subsetting data and throughout R.

7.1.6 Recoding string/numeric variables

You may want to recode your variables. In particular, when you merge data
sets together you need to have identical identification values that R can use
to match each observation on. If in one data set observations for the Republic
of Korea are referred to as “Korea, Rep.” and in another they are labeled
“South Korea”, R will not know to merge them. We need to recode values
in the variables that we want to match our data sets on. For example, in

Preparing Data for Analysis 139

GatheredFertSub the southern Korean country is labeled “Korea, Rep.”. To
recode it to “South Korea” we type:

GatheredFertSub$country[GatheredFertSub$country ==
"Korea, Rep."] <- "South Korea"

This code assigns “South Korea” to all values of the country variable that
equal “Korea, Rep.”.% You can use a similar technique to recode numeric vari-
ables as well. The only difference is that you omit the quotation marks. We
will look at how to code factor variables later.

7.1.7 Creating new variables from old

As part of your data cleanup process (or later during statistical analysis) you
may want to create new variables based on existing variables. For example,
we could create a new variable that is the natural logarithm of Fertilizer-
Consumption. To do this we run the variable through the log function and
assign a new variable that we’ll call logFert Consumption.

GatheredFertSub$logFertConsumption <- log(
GatheredFertSub$FertilizerConsumption

)

summary (GatheredFertSub$logFertConsumption)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf 3 4 -Inf 5 7

We can use a similar procedure to create new variables from R’s many other
mathematical commands and arithmetic operations.”

Notice that when we summarize the new log transformed variable that we
have a minimum (and mean) value of -Inf. This indicates that by logging
the variable we have created observations with the value negative infinity. R
calculates the natural logarithm of zero as negative infinity.® We probably

6The countrycode package [Arel-Bundock, 2014] is very helpful for creating standardized
country identification variables.

"B.g +, -, *, /, " for addition, subtraction, multiplication, division, and exponentia-
tion, respectively.

8R denotes positive infinity with Inf.

140 Reproducible Research with R and RStudio Second Edition

TABLE 7.5: Example Factor Levels

Number Label Value of FertilizerCon-
sumption

1 low < 18

2 medium low > 18 & < 81

3 medium high > 81 & < 158

4 high > 158

don’t want negative infinity values. There are a few ways to deal with this.
We could drop all observations of FertilizerConsumption with the value
zero before log transforming it. Another common solution is recoding zeros as
some small nonnegative number like 0.001. For example:

GatheredFertSub$FertilizerConsumption[
GatheredFertSub$FertilizerConsumption ==
1 <- 0.001

GatheredFertSub$logFertConsumption <- log(
GatheredFertSub$FertilizerConsumption

)

summary (GatheredFertSub$logFertConsumption)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.758 2.735 4.445 3.798 5.058 6.846

Note that this example is included to demonstrate R syntax rather than to
prescribe a certain transformation of skewed data with zeros. The choice of
which transformation to make should ultimately be made based on the data,
model, and context. See Hyndman [2010] for more information on various
alternatives including Box-Cox [Box and Cox, 1964] and inverse hyperbolic
sine transformations [Burbidge and Robb, 1988].

Creating factor variables

We can create factor variables from numeric or string variables. For example,
we may want to turn the continuous numeric FertilizerConsumption vari-
able into an ordered categorical (i.e. factor) variable. Imagine that we want to

Preparing Data for Analysis 141

create a factor variable called FertConsGroup with four levels called ‘low’,
‘medium low’, ‘medium high’, ‘high’. To do this let’s first create a new numeric
variable based on the values listed in Table 7.5. Now let’s use a procedure that
is similar to the variable recoding we did earlier:?

Create numeric factor levels wvartable
Attach GatheredFertSub data frame
attach(GatheredFertSub)

Created new FertConsGroup variable based on
FerttlizerConsumption
GatheredFertSub$FertConsGroup [FertilizerConsumption

< 18] <=1
GatheredFertSub$FertConsGroup [FertilizerConsumption
=18 &

FertilizerConsumption < 81] <- 2
GatheredFertSub$FertConsGroup [FertilizerConsumption

>= 81 &

FertilizerConsumption < 158] <- 3
GatheredFertSub$FertConsGroup [FertilizerConsumption

>= 158] <- 4
GatheredFertSub$FertConsGroup [is.na(FertilizerConsumption)] <- NA

Detach data frame
detach(GatheredFertSub)

Summarize FertConsGroup
summary (GatheredFertSub$FertConsGroup)

Min. 1st Qu. Median Mean 3rd Qu. Max.
#i 1.00 1.00 3.00 2.49 3.00 4.00

You’ll notice that we don’t have a factor variable yet; our new variable is
numeric. We can use the factor command to convert FertConsGroup into a
factor variable with the labels we want.

Create wvector of factor level labels
FCLabels <- c("low", "medium low", "medium high", "high")

91n this code I attached the data frame GatheredFertSub so that it is easier to read.

142 Reproducible Research with R and RStudio Second Edition

Convert FertConsGroup to a factor
GatheredFertSub$FertConsGroup <- factor(GatheredFertSub$FertConsGroup,
labels = FCLabels)

Summarize FertConsGroup
summary (GatheredFertSub$FertConsGroup)

#i# low medium low medium high high
190 163 184 178

We first created a character vector with the factor-level labels and then applied
using factor’s labels argument. Using summary with a factor variable gives
us its level labels as well as the number of observations per level.

The cut function provides a less code-intensive way of creating factors
from numeric ones and labeling factor levels. For example:

Create a factor wariable with the cut command
FertFactor <- cut(GatheredFertSub$FertilizerConsumption,
breaks = c(-0.01, 17.99, 80.99, 157.99, 999.99),
labels = c("low", "medium low",
"medium high", "high"))

Summarize FertFactor
summary (FertFactor)

#H# low medium low medium high high
190 163 184 178

The labels argument lets us specify the factor levels’ names. The breaks
argument lets us specify what values separate the factor levels. Note that we
set the first break as —-0.01, not because any country had negative fertilizer
consumption, but because the intervals created by break exclude the left value
and include the right value.!® If we had used O then all of the observations
where a country used effectively no fertilizer would be excluded from the “low”
category.

10In mathematical notation the “low” level includes all values in the interval
(—0.01, 17.99].

Preparing Data for Analysis 143

7.1.8 Changing variable types

Sometimes a variable will have the wrong type. For example, a numeric vari-
able may be incorrectly made a character string when a data set is imported
from Excel. You can change variables’ types with a number of commands.
We already saw how to convert a numeric variable to a factor variable with
the factor command. Unsurprisingly, to convert a variable to a character use
character and numeric to convert it to a numeric type variable. We can place
as. before these commands (e.g. as.factor) as a way of coercing a change
in type.

Warning: Though these commands have straightforward names, a word
of caution is necessary. Always try to understand why a variable is not of the
type you would expect. Oftentimes variables have unexpected types because
they are coded (or miscoded) in a way that you didn’t anticipate. Changing
the variables’ types, especially when using as., can introduce new errors.
Make sure that the conversion made the changes you expected.

7.2 Merging Data Sets

In the previous section we learned crucial skills for cleaning up data sets.
When your data sets are (a) in the same format and (b) have variables with
identically matching ID values, you can merge your data sets together. In this
section we’ll look at two different ways to merge data sets: binding and the
merge command. We'll also look at ways to address a common issue when
merging data: duplicated observations and columns.

7.2.1 Binding

As we saw in Chapter 3, if your data sets are in the same order-rows in all of
the data sets represent the same observation of the same subject—then you can
simply use the cbind command to bind columns from the data sets together.
This situation is unusual when merging real-world data. If your data sets are
not in exactly the same order you will create a data set with nonsensical rows
that combine data from multiple observations. Therefore, you should avoid
using cbind for merging most real-world data.

If you have data sets with the exact same columns and variable types and
you just want to attach one under the other you can use the rbind command.
It binds the rows in one object to the rows in another.'' It has the same
syntax as cbind (see page 33). Again, you should be cautious when using
this command, though it is more difficult to accidentally create a nonsensical
data set with rbind. R will give you an error if it cannot match your objects’
columns.

HSome programming languages and statistical programs refer to this type of action as
“appending” one data set to another.

144 Reproducible Research with R and RStudio Second Edition

7.2.2 The merge command

Generally, the safest and most effective way to merge two data sets together
is with the merge command. Imagine that we want to merge our Gathered-
FertSub data frame with two other data frames we created in Chapter 6:
FinRegulatorData and DispropData. The simplest way to do this is to use the
merge command twice, i.e.:

MergedDatal <- merge(x = FinRegulatorData,
y = DispropData,
by = "iso2c",
all = TRUE)

MergedDatal <- merge(x = MergedDatal,
y = GatheredFertSub,

by = "iso2c",
all = TRUE)
names (MergedDatal)
[1] "iso2c" "idn"
[3] "country.x" "year.x"
[5] "reg_4state" "country.y"
[7] "year.y" "disproportionality"
[9] "country" "2009"
[11] "2010" "2011"
[13] "year" "FertilizerConsumption"
[15] "logFertConsumption" "FertConsGroup"

Let’s go through this code. The x and y arguments simply specify which
data frames we want to merge. The by argument specifies what variable in
the two frames identify the observations so that we can match them. In this
example we are merging by countries’ ISO country two-letter codes.'? We set
the argument all = TRUE so that we keep all of the observations from both
of the data frames. If the argument is set to FALSE only observations that are
common to both data frames will be included in the merged data frame. The
others will not be included.

You might have noticed that this isn’t actually the merge that we want

12P]ease see this chapter’s Appendix for details on how I created an ISO country two-letter
code variable in the FinRegulatorData data frame.

Preparing Data for Analysis 145

to accomplish with these data frames. Remember that observations are not
simply identified in this time-series cross-section data by one country name or
other country code variable. Instead they are identified by both country and
year variables. To merge data frames based on the overlap of two variables
(e.g. match Afghanistan-2004 in one data frame with Afghanistan-2004 in the
other) we need to add the union command to merge’s by argument. Here is
a full example:'3

MergedData2 <- merge(FinRegulatorData, DispropData,
union("iso2c", "year"),
all = TRUE)

MergedData2 <- merge(MergedData2, GatheredFertSub,
union("iso2c", "year"),

all = TRUE)
names (MergedData2)
[1] "iso2c" "year"
[3] "idn" "country.x"
[5] "reg_4state" "country.y"
[7] "disproportionality" "country"
[9] "2009" "2010"
[11] "2011" "FertilizerConsumption"
[13] "logFertConsumption" "FertConsGroup"

After merging data frames it is always a good idea to look at the result
and make sure it is what you expected. Some post-merging cleanup may be
required to get the data frame ready for statistical analysis.

Big data

Before discussing post-merge cleanup it is important to highlight ways to
handle large data sets. The merge function and many of the other data frame
manipulation functions covered so far in this chapter may not perform well
with very large data sets. If you are using very large data sets it might be worth
investing time learning how to use either the dplyr or data.table packages
[Dowle et al., 2014]. They have many capabilities for working efficiently with

13You can download a modified version of this example as part of the makefile exercise
from Chapter 6: http://bit.1ly/YnMKBG.

146 Reproducible Research with R and RStudio Second Edition

large data sets. Another approach is to learn SQL'# or another special purpose
data handling language.'® Once you know how these languages work, you can
incorporate them into your R workflow with R packages like dplyr.'6

7.2.3 Duplicate values

Duplicate observations are one thing to look out for after (and before) merg-
ing. You can use the duplicated command to check for duplicates. Use the
command in conjunction with subscripts to remove duplicate observations.
For example, let’s create a new object called DataDuplicates from the iso2c-
years that are duplicated in MergedData2. Remember that iso2c and year
are in the first and second columns of the data frame.

DataDuplicates <- MergedData2[duplicated(
MergedData2[, 1:2]),]

nrow(DataDuplicates)

[1]1 7

In this data frame there are 7 duplicated iso2c-year observations. We know
this because nrow tells us that the data frame with the duplicated values has
7 rows, i.e. 7 observations.

To create a data set without duplicated observations (if there are du-
plicates) we just add an exclamation point (!) before duplicated—i.e. not
duplicated—in the above code.

DataNotDuplicates <- MergedData2[!duplicated(
MergedData2[, 1:21),]

Note that if you do have duplicated values in your data set and you run a
similar procedure on it, it will drop duplicated values that have a lower order
in the data frame. To keep the lowest ordered value and drop duplicates higher

14Structured Query Language

15w3schools has an online SQL tutorial at: http://www.w3schools.com/sql/default.asp.

16See the dplyr vignette on using the package with SQL databases at http://cran.
r-project.org/web/packages/dplyr/vignettes/databases.html.

Preparing Data for Analysis 147

in the data set, use duplicated’s fromLast argument like this: fromLast =
TRUE.

Warning: look over your data set and the source code that created the
data set to try to understand why duplicates occurred. There may be a fun-
damental problem in the way you are handling your data that resulted in the
duplicated observations.

7.2.4 Duplicate columns

Another common post-merge cleanup issue is duplicate columns, i.e. variables.
These are variables from the two data frames with the same name that were
not included in merge’s by argument. For example, in our previous merged
data examples there are three country name variables: country.x, country.y,
and country to signify which data frame they are from.!”

You should Of course, decide what to do with these variables on a case-by-
case basis. But if you decide to drop one of the variables and rename the other,
you can use subscripts (as we saw in Chapter 3). The dplyr package [Wickham
and Francois, 2015] has a useful function called select that can also remove
variables from data frames. To remove variables simply write a minus sign
(=) and then the variable name without quotes. For example, imagine that we
want to keep country.x and drop the other variables.'® Let’s also remove the
idn variable:

FinalCleanedData <- dplyr::select(DataNotDuplicates,
-country.y, -country,
-idn)

FinalCleanedData <- dplyr::rename(FinalCleanedData,
country = country.x)

names (FinalCleanedData)

"The former two were created in the first merge between FinRegulatorData and Dis-
propData. When the second merge was completed there were no variables named country
in the MergeData2 data frame, so country did not need to be renamed in the new merged
data set.

18This version of the country variable is the most complete.

148 Reproducible Research with R and RStudio Second Edition

[1] "iso2c" "year"
[3] "country" "reg_4state"
[6] "disproportionality" "2009"
[7] "2010" "2011"

[9] "FertilizerConsumption" "logFertConsumption"
[11] "FertConsGroup"

Alternatively, you can select specific variables to keep with the select func-
tion by writing the variables’ names without a minus sign. Note: if you
are merging many data sets it can sometimes be good to cleanup duplicate
columns between each merge call.

Chapter summary

This chapter has provided you with many tools for cleaning up your data to
get it ready for statistical analysis. Before moving on to the next chapter to
learn how to incorporate statistical analysis as part of a reproducible work-
flow with knitr/rmarkdown, it’s important to reiterate that the function we’ve
covered in this chapter should usually be embedded in the types of data cre-
ation files we saw in Chapter 6. These files can then be tied together with a
makefile into a process that should be able to relatively easily take very raw
data and clean it up for use in your analyses. Embedding these commands
in data creation source code files, rather than just typing the commands into
your R console or manually changing data in Excel, will make your research
much more reproducible. It will also make it easier to backtrack and find mis-
takes that you may have made while transforming the data. Including new or
updated data when it becomes available will also be much easier if you use a
series of segmented data creation source code files that are tied together with
a makefile.

Appendix

R code for turning FertConsumData into year-wide format:

library(WDI)
library(tidyr)

FertConsumpData <- WDI(indicator = "AG.CON.FERT.ZS")

Preparing Data for Analysis 149

Spread FertConsumpData to year wide format
SpreadFert <- spread(FertConsumpData, year, AG.CON.FERT.ZS)

Order SpreadFert by country
SpreadFert <- arrange(SpreadFert, country)

R code for creating iso2c country codes with the countrycode package:

Load countrycode package
library(countrycode)

FinRegulatorData

FinRegulatorData$iso2c <- countrycode(FinRegulatorData$country,
origin = "country.name",
destination = "iso2c")

R code for creating Figure 7.1:

Load ggplot2
library(ggplot2)

Create density plot

ggplot(data = GatheredFert, aes(FertilizerConsumption)) +
geom_density() +
xlab("\n Fertilizer Consumption") + ylab("Density\n") +
theme_bw()

Part 111

Analysis and Results

151

8

Statistical Modeling and knitr

When you have your data cleaned and organized you will begin to examine it
with statistical analyses. In this book we don’t look at how to do statistical
analysis in R (a subject that would and does take up many books). Instead
we focus on how to make your analyses really reproducible. To do this you
dynamically connect your data gathering and analysis source code to your
presentation documents. When you dynamically connect your data gathering
makefiles and analysis source code to your markup document you will be able
to completely rerun your data gathering and analysis and present the results
whenever you compile the presentation documents. Doing this makes it very
clear how you found the results that you are advertising. It also automatically
keeps the presentation of your results—including tables and figures—up-to-date
with any changes you make to your data and analyses source code files.

You can dynamically tie your data gathering, statistical analyses, and
presentation documents together with knitr/rmarkdown. In Chapter 3 you
learned basic knitr/rmarkdown syntax. For the rest of the chapter I'll simply
refer to it as “knitr syntax”, but it applies to rmarkdown as well. In this chap-
ter we will begin to learn knitr syntax in more detail, particularly code chunk
options for including dynamic code in your presentation documents. This in-
cludes code that is run in the background, i.e. not shown in the presentation
document, as well as displaying the code and output in your presentation doc-
ument both as separate blocks and inline with the text. We will also learn how
to dynamically include code from languages other than R. We examine how
to use knitr with modular source code files. Finally, we will look at how to
create reproducible ‘random’ analyses and how to work with computationally
intensive code chunks.

The goal of this and the next two chapters—which cover dynamically pre-
senting results in tables and figures—is to show you how to tie data gathering
and analyses into your presentation documents so closely that every time the
documents are compiled they actually reproduce your analysis and present
the results. Please see the next part of this book, Part IV, for details on how
to create the LaTeX and Markdown documents that can include knitr code
chunks.

Reminder: Before discussing the details of how to incorporate your anal-
ysis into your source code, it’s important to reiterate something we discussed
in Chapter 2. The syntax and capabilities of R packages and R itself can
change with new versions. Also, as we have seen for file path names, syntax

153

154 Reproducible Research with R and RStudio Second Edition

can change depending on what operating system you are using. So it is im-
portant to have your R session info available (see Section 2.2.1 for details) to
make your research more reproducible and future-proof. If someone reproduc-
ing your research has this information, they will be able to download your files
and use the exact version of the software that you used. For example, CRAN
maintains an archive of previous R package versions that can be downloaded.!
Previous versions of R itself can also be downloaded through CRAN.?

8.1 Incorporating Analyses into the Markup

For a relatively short piece of code that you don’t need to run in multiple
presentation documents it may be simplest to type the code directly into
chunks written in your knitr markup document. In this section we will learn
how to set knitr options for handling these code chunks. For a list of many of
the chunk options covered here see Table 3.1.

8.1.1 Full code chunks

By default, knitr code chunks are run by R, and the code and any text output
(including warnings and error messages) are inserted into the text of your
presentation documents in blocks. The blocks are positioned in the final pre-
sentation document text at the points where the code chunk was written in
the knittable markup. Figures are inserted as well. Let’s look at the main
options for determining how code chunks are handled by knitr.

include

Use include=FALSE if you don’t want to include anything in the text of your
presentation document, but you still want to evaluate a code chunk. It is TRUE
by default.

eval

The eval option determines whether or not the code in a chunk will be run.
Set the eval option to FALSE if you would like to include code in the presen-
tation document text without actually running the code. By default it is set
to TRUE, i.e. the code is run. You can alternatively use a numerical vector with
eval. The numbers in the vector tell knitr which expressions in the chunk to
evaluate. For example, if you only want to evaluate the first two expressions,
simply set eval=1:2.

1See: http://cran.r-project.org/src/contrib/Archive/.
2See: http://cran.r-project.org/src/base/.

Statistical Modeling and knitr 155

echo

If you would like to hide a chunk’s code from the presentation document you
can set echo=FALSE. Note that if you also have eval=TRUE then the chunk
will still be evaluated and the output will be included in your presentation
document. Clearly, if echo=TRUE, then source code will be included in the
presentation document. As with eval, you can alternatively use a numerical
vector in echo. The numbers in the vector indicate which expressions to echo
in your final document.

results

We will look at the results option in more detail in the next two chapters (see
especially Section 9.1). However, let’s briefly discuss the option value hide.
Setting results='hide' is almost the opposite of echo=FASLE. Instead of
showing the results of the code chunk and hiding the code, results=’hide’
shows the code, but not the results. Warnings, errors, and messages will still
be printed.

warning, message, error

If you don’t want to include the warnings, messages, and error messages that
R outputs in the text of your presentation documents, just set the warning,
message, and error options to FALSE. They are set to TRUE by default.

cache

If you want to run a code chunk once and the output for when you knit
the document again, rather than running the code chunk every time, set the
option cache=TRUE. When you do this the first time the document is knitted,
the chunk will be run and the output stored in a subdirectory of the working
directory called cache. When the document is subsequently knitted, the chunk
will only be run if the code in the chunk changes or its options change. This is
very handy if you have a code chunk that is computationally intensive to run.
The cache option is set to FALSE by default. Later in this chapter (Section
8.4) we will see how to use the cache.vars command to cache only certain
variables created by a code chunk.

dependson

Cached chunks are only rerun when their code changes. Sometimes one chunk
will depend on the results from a prior chunk. In these cases it is good to
rerun the chunk if the prior one is also rerun. The dependson option allows
you to do this. You can specify either a vector of the labels for the chunks
depended on or their numbers in order from the start of the document. For
example, dependson=c (2, 3) specifies that if the second or third chunks are
rerun, then the current chunk will also be rerun.

156 Reproducible Research with R and RStudio Second Edition

cache.extra

Sometimes to ensure reproducibility it may be useful to rerun a chunk when
some other condition changes, such as when a new version of R is installed or
a dependent file changes. You can feed a list of conditions to cache.extra to
do this. For instance:

cache.extra=list(file.info(Data.csv)$mtime, R.version

Here we set two conditions under which the chunk will be rerun. The first
specifies that the chunk should be rerun whenever the Data.csv file is modified.
The file.info function extracts information about the file and mtime gives
the last time that the file was modified. If this differs from when the chunk
was last run, then it will be run again. This is very useful for keeping your
cached chunks and the files they rely on in sync.

The second condition enabled by R.version reruns the chunk whenever
the R version or even the operating system changes. If you only want to rerun
the chunk when the version of R is different, then use R.version.string.

size

If you do want to print part or all of your code chunk into your LaTeX docu-
ment, you may also want to resize the text. To do this, use the size option.
By default it is set to size='normalsize'. You can use any of the LaTeX
font sizes listed in Table 11.1 from Chapter 11.

8.1.2 Showing code & results inline

Sometimes you may want to have R code or output show up inline with the
rest of your presentation document’s text. For example, you may want to
include a small chunk of stylized code in your text when you discuss how
you did an analysis. Or you may want to dynamically report the mean of
some variable in your text so that the text will change when you change the
data. The knitr syntax for including inline code is different for the LaTeX and
Markdown languages. We’ll cover both in turn.

8.1.2.1 LaTeX
Inline static code

There are a number of ways to include a code snippet inline with your text in
LaTeX. You can simply use the LaTeX command \texttt to have text show
up in the typewriter font commonly used in LaTeX-produced documents to
indicate that some text is code (I use typewriter font for this purpose in this

Statistical Modeling and knitr 157

book, as you have probably noticed). For example, using \texttt{2 + 2}
will give you 2 + 2 in your text. Note that in LaTeX curly brackets ({}) work
exactly like parentheses in R, i.e. they enclose a command’s arguments.

However, the \texttt command isn’t always ideal, because your LaTeX
compiler will still try to run the code inside of the command as if it were
LaTeX markup. This can be problematic if you include characters like the
backslash \ or curly brackets {}. They have special meanings for LaTeX. The
hard way to solve this problem is to use escape characters (see Chapter 4).
The backslash is an escape character in LaTeX.

Probably the better option is to use the \verb command. It is equivalent to
the eval=FALSE option for full knitr code chunks. To use the \verb command,
pick some character you will not use in the inline code. For example, you could
use the vertical bar (1). This will be the \verb delimiter. Imagine that we want
to actually include ‘\texttt’ in the text. We would type:

\verb|\texttt|

The LaTeX compiler will ignore almost anything from the first vertical bar up
until the second bar following \verb. All of the text in-between the delimiter
characters is put in typewriter font.3

Inline dynamic code

If you want to dynamically show the results of some R code in your knitr
LaTeX-produced text you can use \Sexpr. This is a pseudo LaTeX command,;
it looks like LaTeX, but is actually knitr.* Its structure is more like a LaTeX
command’s structure than knitr’s in that you enclose your R code in curly
brackets ({}) rather than the <<>>= . . . @ syntax you use for block code
chunks.

For example, imagine that you wanted to include the mean of a vector
of river lengths—591-in the text of your document. The rivers numeric vec-
tor, loaded by default in R, has the lengths of 141 major rivers recorded in
miles. You can simply use the mean command to find the mean and the round
command to round the result to the nearest whole number:

3For more details see the LaTeX Wikibooks page: http://en.wikibooks.org/wiki/
LaTeX/Paragraph_Formatting#Verbatim_Text (accessed 24 November 2012). Also, for help
troubleshooting see the UK List of Frequently Asked Questions: http://www.tex.ac.uk/
cgi-bin/texfag2html?label=verbwithin (accessed 4 January 2012).

4The command directly descends from Sweave.

158 Reproducible Research with R and RStudio Second Edition

round (mean(rivers), digits = 0)

[1] 591

To have just the output show up inline with the text of your document you
would type something like:

The mean length of 141 major rivers in North America
is \Sexpr{round(mean(rivers), digits = 0)} miles.

This produces the sentence:
The mean length of 141 major rivers in North America is 591 miles.

R code included inline with Sexpr is evaluated using current R options. So if
you want all of the output from Sexpr to be rounded to the same number of
digits, for example, it might be a good idea to set this in a code chunk with
R’s options command. See page 44 for more details.

8.1.2.2 Markdown

Inline static code

To include static code inline in an R Markdown (and regular Markdown)
document, enclose the code in single backticks (* *). For example:

This is example R code: “MeanRiver <- mean(rivers)’.

produces:®

Thisis example R code: MeanRiver <- mean(rivers) .

Inline dynamic code

Including dynamic code in the body of your R Markdown text is similar to
including static code. The only difference is that you put the letter r after the
first single backtick. For example:

5The exact look of the text depends on the Cascading Style Sheets (CSS) style file you
are using. The example here was created with RStudio’s default style file.

Statistical Modeling and knitr 159

“r mean(rivers)’

will include the mean value of the rivers vector in the text of your Markdown
document.

8.1.3 Dynamically including non-R code in code chunks

You are not limited to dynamically including just R code in your presentation
documents. knitr can run code from a variety of other languages including:
Python, Ruby, Bash, Haskell, and Awk. All you have to do to dynamically
include code from one of these languages is use the engine code chunk option
to tell knitr which language you are using. For example, to dynamically include
a simple line of Python code in an R Markdown document type:

**"{r engine='python'}
print "Reproducible Research"

In the final HTML file you will get:8

print "Reproducible Research"

Reproducible Research

Many of the programming language values engine can take are listed in
Table 8.1. To enable more complete syntax highlighting for non-R languages
you will need to download Andre Simon’s highlighter utility. Installation in-
structions can be found on his website at: http://www.andre-simon.de/zip/
download.html.

8.2 Dynamically Including Modular Analysis
Files

There are a number of reasons why you might want to have your R source
code located in separate files from your markup documents even if you compile
them together with knitr.

6 Again, this was created using RStudio’s default CSS style file.

160 Reproducible Research with R and RStudio Second Edition

TABLE 8.1: A Selection of knitr engine Values

Value Programming
Language

awk Awk

bash Bash shell

coffeescript CoffeeScript

gawk Gawk

haskell Haskell

highlight Highlight

python Python

R R (default)

ruby Ruby

sas SAS

sh Bourne shell

First, it can be unwieldy to edit both your markup and long R source code
chunks in the same document, even with RStudio’s handy knitr code folding
and chunk management options. There are just too many things going on in
one document.

Second, you may want to use the same code in multiple documents—an
article and slide show presentation, for example. It is nice to not have to
copy and paste the same code into multiple places. Instead, it is easier to
have multiple documents link to the same source code file. When you make
changes to this source code file, the changes will automatically be made across
all of your presentation documents. You don’t need to make the same changes
multiple times.

Third, other researchers trying to replicate your work might only be inter-
ested in specific parts of your analysis. If you have the analysis broken into
separate and clearly labeled modular files that are explicitly tied together in
the markup file with knitr, it is easy for them to find the specific bits of code
that they are interested in.

8.2.1 Source from a local file

Usually, in the early stages of your research, you may want to run code stored
in analysis files located on your computer. Doing this is simple. The knitr
syntax is the same as for block code chunks. The only change is that instead
of writing all of your code in the chunk, you save it to its own file and use the
source command to access it.” For example, in an R Markdown file we could

"We used the source command in Chapter 6 in our make-like data gathering file.

Statistical Modeling and knitr 161

run the R code in a file called MainAnalysis. R from our ExampleProject like
this:

> {r, include=FALSE}

source ("/ExampleProject/Analysis/MainAnalysis.R"}

Notice that we set the option include=FALSE. This will run the analysis and
produce objects created by the analysis code that can be used by other code
chunks, but the output will not show up in the presentation document’s text.

Sourcing a makefile in a code chunk

In Chapter 6 we created a GNU Makefile to organize our data gathering.
You can run makefiles every time you compile your presentation document.
This can keep your data, analyses, figures, and tables up-to-date. One way
to do this is to run the GNU makefile in an R code chunk with the system
command (see Section 4.5). Perhaps a better way to run makefiles from knitr
presentation documents is to include the commands in a code chunk using the
Bash engine. For example, a Sweave-style code chunk for running the makefiles
in our example project would look like this:

<<engine='bash', include=FALSE>>=
Change working directory to /ExampleProject/Analysis/Data
cd /ExampleProject/Analysis/Data/

Run makefile
make cleanMerge all

Change to working directory to /ExampleProject/Analysis/
cd /ExampleProject/Analysis/
Q

Please see page 115 for details on the make command arguments used here.

You can Of course, also use R’s source command to run an R make-
like data gathering file. Unlike GNU Make, this will rerun all of the data
gathering files, even if they have not been updated. This may become very
time consuming depending on the size of your data sets and how they are
manipulated.

162 Reproducible Research with R and RStudio Second Edition

One final note on including makefiles in your knitr presentation document
source code: it is important to place the code chunk with the makefile before
code chunks containing statistical analyses that depend on the data file it
creates. Placing the makefile first will keep the others up-to-date.

8.2.2 Source from a non-secure URL (http)

Sourcing from your computer is fine if you are working alone and do not want
others to access your code. Once you start collaborating and generally wanting
people to be able to reproduce your analyses, you need to use another storage
method. The simplest method is to host the replication code in your Dropbox
public folder. You can find the file’s public URL in the same way that you did
in Chapter 5. Then use the source command the same way as we did before
with the read.table command.®

8.2.3 Source from a secure URL (https)

If you are using GitHub or another service that uses secure URLs to host your
analysis source code files you need to use the source_url command in the
devtools package. For GitHub based source code we find the file’s URL the
same way we did in Chapter 5 (Section 5.3.4). Remember to use the URL for
the raw version of the file. I have a short script hosted on GitHub for creating
a scatterplot from data in R’s cars data set. The script’s shortened URL is
http://bit.1y/1D5p1w6.? To run this code and create the scatterplot using
source_url you simply type:

library(devtools)

source_url("https://raw.githubusercontent.com/christophergandrud/Rep-Res-Examples/master/G

SHA-1 hash of file is ff75a88b90decfcaefc9903bbc283elfc4cd2339

8You can also make the replication code accessible for download and either instruct
others to change the working directory to the replication file or have them change the
directory information as necessary. You will need to do this with GNU makefiles like those
included with this book.

9The original URL is at https://raw.githubusercontent.com/christophergandrud/
Rep-Res-Examples/master/Graphs/SimpleScatter.R. This is very long, so I shortened it
using bitly. You may notice that the shortened URL is not secure. However, it does link to
the original secure https URL.

Statistical Modeling and knitr 163

120
1

100
1

Stopping Distance (ft)
40 60
1

20
1

T T T T T
5 10 15 20 25

Speed (mph)

You can also use the devtools command source_gist in a similar way to
source GitHub Gists. Gists are a handy way to share code over the internet.
For more details see: https://gist.GitHub.com/.

Similar to what we saw in Chapter 5 (Section 5.3.4), if you would like
to use a particular version of a file stored on GitHub, simply include that
version’s URL in the source_url call. This can be useful for replicating par-
ticular results. Linking to a particular version of a source code file will enable
replication even if you later make changes to the file. To access the URL for
a particular version of a file, first click on the file on GitHub’s website. Then
click the History button (¥*¥). This will take you to a page listing all of

the file’s versions. Click on the Browse Code button (¢) next to the ver-
sion of the file that you want to use. Finally, click on the Raw button to be
taken to the text-only version of the file. Copy this page’s URL and use it in
source_url.

Also, just like with source_data, we can set the shal argument to tell
source_url to make sure that the source code file it is downloading is the
one we intended. This will work regardless of whether or not the file is stored
on GitHub.

8.3 Reproducibly Random: set.seed

If you are including simulations in your analysis it is often a good idea to
specify the random number generator state you used. This will allow others
to exactly replicate your ‘randomly’—really pseudo-randomly—generated sim-
ulation results. Use the set.seed command in your source code files or code

164 Reproducible Research with R and RStudio Second Edition

chunks to do this. For example, use the following code to set the random
number generator state'® and randomly draw 1,000 numbers from a standard
normal distribution with a mean of 0 and a standard deviation of 2.

set.seed(125)
Drawl <- rnorm(1000, mean = 0, sd = 2)

summary (Drawl)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.2110 -1.4070 -0.1040 -0.1215 1.3160 5.6770

The rnorm command draws the 1,000 simulations. The mean argument allows
us to set the normal distribution’s mean and sd sets its standard deviation.
Just to show you that we will draw the same numbers if we use the same seed,
let’s run the code again:

set.seed(125)
Draw2 <- rnorm(1000, mean = 0, sd = 2)

summary (Draw2)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7.2110 -1.4070 -0.1040 -0.1215 1.3160 5.6770

8.4 Computationally Intensive Analyses

Sometimes you may want to include computationally intensive analyses that
take a long time to run as part of a knitr document. This can make writing

10See the Random help file for detailed information on R’s random number generation
capabilities by typing ?Random into your console.

Statistical Modeling and knitr 165

the document frustrating because it will take a long time to knit it each time
you make changes. There are at least two solutions to this problem: the cache
chunk option and makefiles. We discussed makefiles in Chapter 6, so let’s look
at how to work with the cache option.

When you set cache=TRUE for the code chunk that contains the analysis,
the code chunk will only be run when the chunk’s contents change!! or the
chunk options change. This is a very easy solution to the problem. It does have
a major drawback: other chunks can’t access objects created by the chunk or
use commands from packages loaded in it. Solve these problems by (a) having
packages loaded in a separate chunk and (b) save objects created by the cached
chunk to a separate RData file that can be loaded in later chunks (see Section
3.1.6 for information on saving to RData files).!2

Imagine that in a cached code chunk we create an object called Sample.
Then in a later code chunk we want to use the hist command to create a
histogram of the sample. In the cached code chunk we save Sample to a file
called Sample.RData.

<<Sample, cache=TRUE>>=

Sample <- rnorm(n 1000, mean = 5, sd = 2)

save(Sample, file = "Sample.RData")
c]

The latter code chunk for creating the histogram would go something like
this:13

<<Histogram>>=

load(file =)

1 Note that the chunk will not be run if only the contents of a file the chunk sources are
changed. Use the dependson option in cases where it is important to rerun a chunk when a
prior chunk changes.

121t’s true that when knitr caches a code chunk it saves the chunk’s objects to an .RData
file. However, it is difficult to load this file directly because the file name changes every time
the cached chunk is rerun.

3For reference, Sample was created by using the rnorm command to take a random
sample of size 1,000 from a normal distribution with a mean of five and standard deviation
of two.

166 Reproducible Research with R and RStudio Second Edition

hist(Sample)
¢

If the code chunk you want to cache creates many objects, but you only want
to save a few of them, you can use knitr’s cache.vars chunk option. Simply
give it a character vector of the objects’ names that you want to save.

Chapter summary

In this chapter we covered in more detail key knitr syntax for including code
chunks in our presentation documents. This and other tools we learned in
this chapter are important for tying our statistical analyses directly to its
advertising, i.e. our presentation documents. In the next two chapters we will
learn how to take the output from our statistical analysis and, using knitr,
present the results with dynamically created tables and figures.

9
Showing Results with Tables

Graphs and other visual methods, discussed in the next chapter, can often be
more effective ways to present descriptive and inferential statistics than ta-
bles.! Nonetheless, tables of parameter estimates, descriptive statistics, and so
on can sometimes be important tools for describing your data and presenting
research findings. See Ehrenberg [1977] and Gelman [2011] for information on
creating tables for effective communication.

Learning how to dynamically connect statistical results with tables in your
presentation documents aids reproducibility and can ultimately save you a
lot of time. Manually typing results into tables by hand is tedious, not very
reproducible, and can introduce errors.? It’s especially tedious to retype tables
to reflect changes you made to your data and models. Fortunately, you don’t
actually need to create tables by hand. There are many ways to have R do
the work for you.

The goal of this chapter is for you to learn how to dynamically create tables
for your presentation documents written in LaTeX and Markdown. We will
first learn the simple knitr/rmarkdown syntax we need to dynamically include
tables created from R objects. Then we will learn how to actually create the
tables. There are a number of ways to turn R objects into tables that can be
dynamically included in LaTeX or Markdown/HTML markup. In this chapter
we mostly focus on three tools for creating tables: the kable function from
knitr, the atable package, and the texreg package [Leifeld, 2015]. kable can
create tables from data frames for both LaTeX and Markdown/HTML docu-
ments. ztable does the same, but is much more customizable. texreg produces
publication-quality tables from objects containing statistical model results—
model objects. It allows you to combine results from multiple models into one
table. Unfortunately texreg is less flexible with objects of classes it does not
support.>

IThis is especially true of the small-print, high-density coefficient estimate tables that
are sometimes descriptively called ‘train schedule’ tables.

2For example, in a replication of Reinhart and Rogoff’s much cited [2010] study of eco-
nomic growth and public debt, Herndon et al. [2014] found a number of apparent transcrip-
tion errors. Analysis results in the original spreadsheets appear to not have been entered
into the paper’s tables accurately.

3These are not the only packages available in R for creating presentation document
tables from R objects. I personally really like the stargazer package [Hlavac, 2014]. It has a
similar syntax to tezreg and is particularly good for showing results from multiple models
estimated using different model types in one table.

167

168 Reproducible Research with R and RStudio Second Edition

Warning: Automating table creation removes the possibility of adding
errors to the presentation of your analyses by incorrectly copying output, a
big potential problem in hand-created tables. However, it is not error-free.
You could easily create inaccurate tables with coding errors. So, as always, it
is important to ‘eyeball’ the output. Does it make sense? If you select a couple
values in the R output, do they match what is in the presentation document’s
table? If not, you need to go back to the code and see where things have gone
wrong. With that caveat, let’s start making tables.

9.1 Basic knitr Syntax for Tables

The most important knitr rmarkdown chunk option for showing tables is
results. The results option can have one of four values:

e 'hide'’,
e 'asis',
e 'markup',
e 'hold'.

The value hide clearly hides the results of your code chunk from your presen-
tation document. hold collects all of the output and prints it at the end of
the chunk. To include tables created from R objects in your LaTeX or Mark-
down output you should set results='asis' or results='markup'. asis is
the simplest option as it writes the raw markup form of the table into the
presentation document, not as a highlighted code chunk, but as markup. It is
then compiled as table markup with the rest of the document. markup uses
an output hook to mark up the results in a predefined way. In this chapter we
will work with examples using the asis option.*

9.2 Table Basics

Before getting into the details of how to create tables from R objects we need
to first learn how generic tables are created in LaTeX and Markdown/HTML.
If you are not familiar with basic LaTeX or Markdown syntax you might want
to skip ahead to chapters 11 and 13, respectively, before coming back to learn
about making tables in these languages.

4Note that the results option is a major difference in syntax between knitr and Sweave.
In Sweave the equivalent option is results=TEX.

Showing Results with Tables 169

9.2.1 Tables in LaTeX

Tables in LaTeX are usually embedded in two environments: the table and
tabular environments. What is a LaTeX environment in general?

A LaTeX environment is a part of the markup where special commands
are executed. A simple environment is the center environment.® Everything
typed in a center environment is, unsurprisingly, centered. Typing:

\begin{center}
This is a center environment.
\end{center}

creates the following text in the PDF output:
This is a center environment.

LaTeX environments all follow the same general syntax:

\begin{ENVIRONMENT NAME}

\end{ENVIRONMENT NAME}

You do not have to indent the contents of an environment. Indentations neither
affect how the document is compiled nor show up in the final PDF.6 It is
conventional to indent them, however, because it makes the markup easier to
read.

In this chapter we will learn about two types of environments you need for
tables in LaTeX. The tabular environment allows you to format the content
of a table. The table environment allows you to format a table’s location in
the text and its caption.

The tabular environment

The tabular environment allows you to create tables in LaTeX. Let’s work
through the basic syntax for a simple table.”

5For a comprehensive list of LaTeX environments see: http://latex.wikia.com/wiki/
List_of_LaTeX_environments.

6 An aside: the tabbing environment is a useful way to create tabbed text in LaTeX. We
don’t cover this here though.

"For a comprehensive overview, see the LaTeX Wiki page on tables: http://en.
wikibooks.org/wiki/LaTeX/Tables.

170 Reproducible Research with R and RStudio Second Edition

To begin a simple tabular environment type \begin{tabular}{TABLE_SPEC}.
The TABLE_SPEC argument allows you to specify the number of columns in
a table and the alignment of text in each column. For example, to create a
table with three columns, the first of which is left-justified and the latter two
center-justified we type:

\begin{tabular}{l ¢ c}

The 1 argument creates a left-justified column, c creates a centered one. If
we wanted a right-justified column we would use r.® Finally, we can add
a horizontal line between columns by adding a vertical bar | between the
column arguments.’ For example, to place a vertical line between the first
and second column in our example table we would type:

\begin{tabular}{l | c c}

Now let’s enter content into our table. We saw earlier how CSV files delimit
individual columns with commas. In LaTeX’s tabular environment, columns
are delimited with ampersands (&).!° In CSV tables, new lines are delimited
by starting a new line. In LaTeX tables you use two backslashes (\\).!! Here
is a simple example of the first two lines of a table:

\begin{tabular}{l | c c}
Observation & Variablel & Variable2 \\
Subjectl & a & b \\

It is common to demarcate the row with a table’s column names—the first

8You can also specify a column’s width by using m{WIDTH} instead. Be sure to load the
array package in the preamble for this to work. Using m will create a column of a specified
width that is vertically justified in the middle. For example, m{3cm} would create a column
with a width of 3 centimeters. Text in the column would automatically be wrapped onto
multiple lines if need be. You can replace the m with either p or b. p vertically aligns the
text at the top, b aligns it at the bottom.

91f you add two vertical bars (|]) you will get two lines.

10Tf you want to include an ampersand in the text of your LaTeX document you need to
escape it like this: \&.

1You can use two backslashes outside of the tabular environment as well to force a new
line. Also, to increase the space between the line you can add a vertical width argument to
the double backslashes. For example, \\ [3cm] will give you a 3-centimeter gap between the
current line and the next one.

Showing Results with Tables 171

row—with horizontal lines. A horizontal line also often visually demarcates a
table’s end. You can add horizontal lines in the tabular environment with
the \hline command.

\begin{tabular}{l | c c}
\hline
Observation & Variablel & Variable2 \\
\hline \hline
Subjectl & a & b \\
\hline

Finally, we close the tabular environment with \end{tabular}. The full code
(with a few extra rows added) is:

\begin{tabular}{l | ¢ c}
\hline
Observation & Variablel & Variable2 \\
\hline \hline
Subjectl & a & b \\
Subject2 & c & d \\
Subject3 & e & £ \\
Subject4 & g & h \\
\hline
\end{tabular}

This produces the following table:

Observation | Variablel Variable2
Subjectl a b
Subject2 c d
Subject3 e f
Subject4 g h

The table float environment

You might notice that the table we created so far lacks a title and is bunched
very closely to the surrounding text. In LaTeX we can create a table float en-
vironment to solve this problem. Float environments allow us to separate a ta-
ble from the text, specify its location, and give it a caption.'? To begin a table

12We will see in the next chapter how to use figure floats as well.

172 Reproducible Research with R and RStudio Second Edition

TABLE 9.1: Example Simple LaTeX Table

Observation | Variablel Variable2
Subject1 a b
Subject2 ¢ d
Subject3 e f
Subject4 g h

float environment use \begin{table} [POSITION_SPEC]. The POSITION_SPEC
argument allows us to determine the location of the table. It can be set to h for
here, i.e. where the table is written in the text. It can also be t to place it on
the top of a page or b for the bottom of the page. To set a title for the table use
the \caption command. LaTeX automatically determines the table’s number,
so you only need to enter the text. You can also declare a cross-reference key
for the table with the \1abel command.!® A table environment is Of course,
closed with \end{table}. Let’s see a full example.

\begin{tablel}[t]
\caption{Example Simple LaTeX Table}
\label{ExLaTeXTable}
\begin{center}
\begin{tabular}{l | c c}
\hline
Observation & Variablel & Variable2 \\
\hline \hline
Subjectl & a & b \\
Subject2 & c & d \\
Subject3 & e & f \\
Subject4 & g & h \\
\hline
\end{tabular}
\end{center}
\end{table}

Notice that the tabular environment is further nested in the center envi-
ronment. This centers the table while leaving the table’s title left-justified.
The final result is Table 9.1. One final tip: to have the caption placed at the

13This command works throughout LaTeX. To reference the table type in the text of your
document \ref{KEY}, where KEY is what you set with the \label command. Use \pageref
to reference the page number.

Showing Results with Tables 173

bottom rather than the top of the table in the final document, simply put the
caption command after the tabular environment is closed.

You can see how typing out a table in LaTeX gets very tedious very fast.
For all but the simplest tables it is best to try to have R do the table-making
work for you.

9.2.2 Tables in Markdown/HTML

Now we will briefly look at the syntax for creating simple Markdown and
HTML tables before turning to learn how to have R create these tables for
us.

Markdown tables

Markdown table syntax, as with all Markdown syntax, is generally much sim-
pler than LaTeX’s tabular syntax. The markup is much more human readable.
Nonetheless, larger tables can still be tedious to create.

You do not need to declare any new environments to start creating a
Markdown table. Just start typing in the content. Columns are delimited in
Markdown tables with a vertical bar (|). Rows are started with a new line.
To indicate the head of the table—usually the row(s) containing the column
names—separate it from the body of the table with a row of dashes (e.g. -—--).
Here is an example based on the table we created in the previous section:

Observation | Variablel | Variable2

Subjectl | a | b

Note that it is not necessary to line up the vertical bars. You just need to
have the same number of them on each row.

You can specify each column’s text justification using colons on the dashed
row. For example, this code will create the left-center-center justified format-
ted table we made earlier:

Observation | Variablel | Variable2

Subjectl

| a | b
Subject2 | c | 4
Subject3 | e | £
Subject4 | g | ¢

174 Reproducible Research with R and RStudio Second Edition

To create a left-justified column simply use a colon on only the left side of the
dashes.

The ultimate look of a Markdown table is highly dependent on the CSS
style file you are using (see Chapter 13 for how to change your CSS style file).
The default RStudio CSS style as of late 2014 formats our table to look like
this:

Observation Variable1 Variable2
Subjectl a b
Subject2 c d
Subject3 e f
Subject4 g c

Using a different CSS style file'* we can get something like this:

0BSERVATION VARIABLET VARIABLEZ
Subject1 a b
Subjectz c d
Subject3 e t
Subjects g c

In basic Markdown you can add a caption with the heading syntax (see Section
13.1.3). In this example the three hashes (###) create the header:

Observation | Variablel | Variable2

producing something like this:

14The table was created using the Upstanding Citizen style from the program Marked.

Showing Results with Tables 175

Example Simple Markdown Table

OBSERVATION YARIABLEI VARIABLE2
Subject1 a b
Subject2 C d
Subject3 e f
Subject4 g C

HTML tables

The texreg function that we will learn in the next section doesn’t create tables
formatted with Markdown syntax. It can create tables with HTML syntax.
This is useful for us because virtually any HTML markup can be incorporated
into a Markdown document. In fact, Markdown table syntax is only a stepping
stone for more easily producing tables with HTML syntax. So it is useful to
also understand the basic syntax for HTML tables.

HTML uses element “tags” to begin and end tables. The main element
we use to create tables is, well, the tables element. This is very similar to
LaTeX’s tabular environment. An HTML element generally begins with a
start tag and ends with an end tag. Clearly this is very similar to LaTeX’s
\begin{} and \end{} commands. Begin tags are encapsulated in a greater-
than and less-than sign and include the element tag name (<TAG>). End tags
are similar, but include a forward slash like this </TAG>. The content of the
element goes between the start and end tags. For example:

<table>

</table>

As in LaTeX you are not required to tab the content of a table element;
however, it does make the markup document easier to read and, as the number
of tags proliferates, easier to write.

176 Reproducible Research with R and RStudio Second Edition

You can specify element attributes inside of start tags.'® For example, to
add a border to the table use: <table border="1">.16

Table rows are put inside of tr (table rows) element tags. Individual cells
are delimited with td (standard cell) tags. Here is what the first row of our
example table looks like in basic HTML:

<table>
<tr>
<td>0Observation</td> <td>Variablel</td> <td><Variable2/td>
</tr>

We can further delimit a table’s header row(s) from its body with the thead
and tbody tags. Finally, before making a full table it’s useful to mention that
table captions can be included with caption tags. Let’s put this all together:

<table>
<thead>
<tr>
<td>0bservation</td> <td>Variablel</td> <td>Variable2</td>
</tr>
</thead>
<tbody>
<tr>
<td>Subject1</td> <td>a</td> <td>b</td>
</tr>
<tr>
<td>Subject2</td> <td>c</td> <td>d</td>
</tr>
<tr>
<td>Subject3</td> <td>e</td> <td>e</td>
</tr>
<tr>
<td>Subject4</td> <td>f</td> <td>f</td>
</tr>
</tbody>
</table>

As with Markdown tables, the ultimate appearance of the table is highly
dependent on the style files you use.

15These work like arguments in R in that they change how the element is evaluated.
16Whether or not a border appears is determined by whether or not the style sheet you
are using includes borders.

Showing Results with Tables 177

9.3 Creating Tables from Supported Class R
Objects

Just as the write.csv command turns an R data frame into a CSV formatted
text file, there are a number of methods in R to take an object—e.g. a matrix,
data frame-the output from a statistical analysis, and so on—and turn them
into LaTeX and HTML tables. kable, xtable, and texreg each work most easily
with specific object classes that their designers explicitly supported.

9.3.1 kable for Markdown and LaTeX

kable easily converts matrices and data frames into tables for Markdown,
HTML, and LaTeX among others. Let’s create a simple data frame:

kable_ex <- data.frame(

Observation = c("Subjectl", "Subject2",
"Subject3", "Subjectd"),

Variablel = c("a" nen gt ugu)

Val‘lab162 = C(Hb” |ldl| |lfll HCll)

Then simply place this data frame into a kable call:

kable(kable_ex, caption = "Example kable Table")

This creates the following table:

Example kable Table

Observation | Variablel | Variable2
Subject1 a b
Subject2 (¢ d
Subject3 e f
Subject4 g c

Beyond setting the tables caption with caption, there are a few other alter-
ations that can be made with kable arguments. You can specify new column
and row names by passing character vectors to col.names and row.names,

178 Reproducible Research with R and RStudio Second Edition

respectively. These are very useful as it can be difficult, or at least irritating,
for your readers to try to decode the names you give to your data frame rows
and columns in R. Another useful argument is digits. This will round num-
bers in the table to a specified number of digits after the decimal place. To
effectively convey your results you should at the least only include digits that
are significant in that they meaningfully vary in the data [Ehrenberg, 1977,
281].

You can also change the markup language that the table is created in using
the format argument. For example, to create a LaTeX formatted table use
format = ’latex’. In general, you do not need to specify the format if you
are using knitr or rmarkdown to include the table in a presentation document.
This will be done automatically.

9.3.2 ztable for LaTeX and HTML

While kable allows you to quickly create simple tables, it can only do so
from matrices and data frames. It also has limited customizability. The ztable
package can create more customizable tables from a wider variety of R objects,
including statistical model objects.

Different R statistical model estimation commands can produce model ob-
jects of different classes. For example, the 1m (linear model) command creates
model summaries of the 1m class. Let’s create a simple linear regression using
the swiss data frame and 1lm command. This data frame is included with R
by default. The simple linear regression model we are going to make has the
swiss variable Examination as the dependent variable and Education as
the only independent variable.!”

M1 <- 1lm(Examination ~ Education, data = swiss)

class(M1)

[1] "1m"

By using the class command we can see that M1 is of the 1m class. M1 con-
tains items estimated by the linear regression model'® such as the coefficient

17For a description of these variables type ?swiss into the console

181f you are unfamiliar with the syntax of R statistical estimation models the previous code
might be confusing. In general ‘response’ (Y') variables are written first and are separated
from the ‘explanatory’ (X) variables by a tilde (~). Crawley [2005, 107] notes that you
can read Y ~ X as ‘Y is modeled as a function of X" In later examples we will see that
individual explanatory variables are generally separated by plus signs (+), indicating that

Showing Results with Tables 179

estimates and their standard errors. To get a summary of a model object’s
contents use the summary command like this:

Show summary of M1 model object
summary (M1)

##
##
#i#t
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = Examination ~ Education, data = swiss)

Residuals:
Min 1Q Median 3Q Max
-10.9322 -4.7633 -0.1838 3.8907 12.4983

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 10.12748 1.28589 7.876 5.23e-10 *xx*
Education 0.57947 0.08852 6.546 4.81e-08 *x*x

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.773 on 45 degrees of freedom
Multiple R-squared: 0.4878,Adjusted R-squared: 0.4764
F-statistic: 42.85 on 1 and 45 DF, p-value: 4.811e-08

To find a full list of object classes that ztable supports, type methods (xtable)
into the R Console after you have loaded the package.

xtable for LaTeX

Let’s look at how to create LaTeX tables with ztable by creating a table
summarizing the estimates from the M1 model object.

<<results='asis', echo=FALSE>>=
Load ztable
library(xtable)

Create LaTeX table from M1 and show the output markup

they are included in the model, not that they are added. For more information see Crawley
[2005, Ch. 7].

180 Reproducible Research with R and RStudio Second Edition

xtable(M1, caption = "Linear Regression,
Dependent Variable: Exam Score",
label = "BasicXtableSummary",
digits = 1)

@

When included in an R Sweave-style LaTeX document, this code will create
a table exactly like Table 9.2.

Let’s go through this code, working from the outside in. First you’ll no-
tice that we’'ve set two knitr code chunk options. As we discussed earlier,
results='asis' allows us to include the LaTeX formatted table created by
ztable. The next option echo=FALSE hides the code from being shown in our
final document. The ztable command creates the summary table of our M1
model object. Not only does it produce both complete tabular and table en-
vironments, but also through the caption and label arguments it automat-
ically adds in the table’s title and cross-reference label, respectively. Finally,
notice that I added the digits = 1 argument. As in kable, this specifies that
I want numbers in the table to be rounded to one decimal digit.

Estimate Std. Error t value Pr(>]t])
(Intercept) 10.1 1.3 7.9 0.0
Education 0.6 0.1 6.5 0.0

TABLE 9.2: Linear Regression, Dependent Variable: Exam Score

xtable for Markdown/HTML

We can use ztable and the print.xtable command'® to also create tables
for Markdown and HTML documents. The ztable command produces, un-
surprisingly, xtable class objects. We can run these through the print com-
mand and add arguments to customize how the table is formatted. By default,
print.xtable’s type argument is set to "latex". To create an HTML table
that can be inserted into Markdown and HTML documents, set the type ar-
gument from "latex" to "html". For example, to create an HTML version
of the table summarizing M1 and include it in an R Markdown document we

type:

19Note: you can abbreviate print.xtable simply as print.

Showing Results with Tables 181

> {r, results='asis', echo=FALSE}

library(xtable)

M1Table <- xtable(M1, caption = "Linear Regression, Dependent
Variable: Exam Score",
label = "BasicXtableSummary",
digits = 1)

print.xtable(MiTable, type = "html", caption.placement = "top")

If you intend to include multiple tables in your R Markdown document you
will want to set all of the tables to be printed in HTML. You can place
options("xtable.type" = "html") in a code chunk near the beginning of
your document.?° This simply makes it so that you don’t need to include
type = "html" every time you use print.

Notice in the previous code example that we also added the
caption.placement = "top" argument. This will move the caption from the
bottom of the table, as it is in Table 9.2, to the top. See the xtable package
documentation?! for the full list of print.xtable options.

9.3.3 texreg for LaTeX and HTML

kable and xtable are limited when it comes to creating tables from statistical
model objects. kable only works with matrices and data frames. ztable is
easiest when working with only one model object at a time. Furthermore, by
default these tools do not create output tables that present estimates from
multiple statistical models in the style used by many prominent academic
journals. The texreg package is very useful for creating these types of tables.
It also supports more model object types than xtable.

texreg for LaTeX

Imagine we want to show the estimates from a number of nested regression
models in LaTeX a table like Table 9.3. For example, to estimate nested re-
gression models from the remaining variables in the swiss data set we would

type:

200f course, you will probably want to use the include=FALSE knitr option with this code
chunk.
2lhttp://cran.r-project.org/web/packages/xtable/xtable. pdf

182 Reproducible Research with R and RStudio Second Edition

Estimated mested regression models
M2 <- Im(Examination ~ Education + Agriculture, data = swiss)

M3 <- 1m(Examination ~ Education + Agriculture + Catholic,
data = swiss)

M4 <- Im(Examination ~ Education + Agriculture + Catholic +
Infant.Mortality, data = swiss)

M5 <- lm(Examination ~ Education + Agriculture + Catholic +
Infant.Mortality + Fertility, data = swiss)

xtable for LaTeX

We can now include these model objects in one LaTeX table with texreg.
Remember to include results=’asis’ in the code chunk head.

Load texreg package
library(texreg)

Create custom coefficient names

cust_coef <- c('(Intercept)', 'Education', 'Agriculture',
'Catholic', 'Infant Mortality',
'"Fertility')

Create nested regression model table
texreg(list (M1, M2, M3, M4, M5),
caption = 'Nested Estimates Table with \\emph{texregl}',
caption.above = TRUE,
label = 'Basic_texregTable',
custom.coef .names = cust_coef)

Notice that we placed the model objects in a list when we called texreg.
texreg automatically created the table and tabular environments and by
default centers the table.?? We added a caption and reference label with the
caption and label arguments, respectively. By default, the caption is placed

22Use the center = FALSE argument to override centering. If you would like to only
create the tabular environment use the argument table = FALSE. Creating your own table
environment can be useful in situations where you want more customizability.

Showing Results with Tables 183

TABLE 9.3: Nested Estimates Table with texreg

Model 1 Model 2 Model 3 Model 4 Model 5

(Intercept) 10.13*** 19.72*** 18.54*** 18.66** 24.57**
(1.29) (3.20) (2.64) (5.84) (8.24)
Education 0.58*** 0.36** 0.42%** 0.427** 0.33*
(0.09) (0.10) (0.09) (0.09) (0.13)
Agriculture —0.14** —0.07 —0.07 —0.08
(0.04) (0.04) (0.04) (0.04)
Catholic —0.08"** —0.08*** —0.07**
(0.02) (0.02) (0.02)
Infant Mortality —0.01 0.10
(0.23) (0.25)
Fertility —0.10
(0.09)
R? 0.49 0.59 0.73 0.73 0.73
Adj. R? 0.48 0.57 0.71 0.70 0.70
Num. obs. 47 47 47 47 47
RMSE 5.77 5.25 4.30 4.36 4.35

***p < 0.001, **p < 0.01, *p < 0.05

below the table, so we used caption.above = TRUE to place it on top. Finally,
we created custom coefficient names with custom.coef .names that are a bit
tidier than the variable names in our R dataset. Your readers will appreciate
easily discernible coefficient names.

In the LaTeX caption you’ll notice \\emph{texreg}. In LaTeX the emph
command italicizes text (we’ll see this again in Chapter 11). We added an addi-
tional escape character \ so that R would not try to interpret the e and instead
feed it to LaTeX. By default, texreg uses stars = c(0.001, 0.01, 0.05)
to determine at what p-values to display statistical significance stars. This is
the same as the 1m model summary default showing three sets of statistical
significance stars. You can define the significance levels by assigning a different
numeric vector to the stars argument.

There are many other changes you can make to tables created with texreg.
You can change the column and coefficient names, determine what type of
standard errors to show, and so on. For the full list of arguments, see the help
file by typing ?texreg into your R Console.

texreg for HTML

You can also use the texreg package to create tables in Markdown/HTML
documents. Instead of the texreg function, use htmlreg. The syntax is largely
similar, though arguments relating to LaTeX are not available, while others

184 Reproducible Research with R and RStudio Second Edition

relating the HTML are. Here is a simple example creating Table 9.3 in an
HTML document:

htmlreg(list(M1, M2, M3, M4, M5),
caption = 'Nested Estimates Table in HTML Document',
caption.above = TRUE,
custom.coef .names = cust_coef)

Notice that we did not include the label argument as this is not available in
HTML. The resulting table looks like this:

Model1 Model2 Model 3 Model4 Model 5

K rx T3

(Intercept) 10.13 19.72 18.54 18.66"7 24.57"
(1.29) (3.20) (2.64) (5.84) (8.24)
Education 0587 0367 0427 0427 033
(0.09) (0.10) (0.09) (0.09) (0.13)
Agriculture -0.147 -007 -0.07 -0.08
(0.04) (0.04) (0.04) (0.04)
Catholic 008" -0.08" -0077
(0.02) (0.02) (0.02)
Infant Mortality -0.01 0.10
(0.23) (0.25)
Fertility -0.10
(0.09)
R? 0.49 0.59 0.73 0.73 0.73
Adj.R2 0.48 0.57 0.71 0.70 0.70
Num. obs. 47 47 47 47 47

p <0.001, p<0.01,p<0.05

9.3.4 Fitting Large Tables in LaTeX

Sometimes you may have large tables that are difficult to fit onto a page in
LaTeX. There are a number of ways to adjust tables so that they fit on the

page.
LaTeX landscape tables

If your LaTeX table is very wide, e.g. because it shows results from many
estimation models, you can use LaTeX’s 1scape package to create landscape

Showing Results with Tables 185

formatting environments. Rather than orienting the text of a page so that it
is in profile (a long page), a landscape environment turns it 90 degrees so
that it has a landscape orientation (a wide page).

To use the Iscape package, first place \usepackage{lscape} in your
LaTeX document’s preamble. Then begin a landscape environment with
\begin{landscape} where you would like it located in the text. Then place
the table environment information and knitr code for creating the table.
Finally, close the landscape environment with \end{landscape}l.

LaTeX scalebox for tables

In addition, the scalebox command from the graphics package could be useful

for fitting large tables onto a PDF page. This command expands or shrinks

the text in the table. texreg actually has a scalebox argument. If you use

scalebox = 0.5 it will halve the size of the table; scalebox = 2 doubles it.
More generally, to rescale a table use:

\scalebox{HORIZONTAL_SCALE} [VERTICAL_SCALE]{TABLE}

HORIZONTAL_SCALE is how much to scale the table horizontally. VERTICAL_SCALE
is how much to scale vertically and TABLE is the table or R code chunk to create
the table.

9.3.5 «atable with non-supported class objects

The kable, texreg, and xtable packages are very convenient for model objects
they know how to handle. With supported class objects the functions in these
packages know where to look for the vectors containing the things—coefficient
names, standard errors, and so on-that they need to create tables. With un-
supported classes, however, they don’t know where to look for these things.
Luckily, there is a work around. You tell xtable where to find elements you
want to include in your table. xtable can handle matrix and data frame class
objects. The rows of these objects become table rows and the columns become
the table columns. So, to create tables with non-supported class objects you
need to:

1. find and extract the information from the unsupported class object
that you want in the table,

2. convert this information into a matrix or data frame where the rows
and columns of the object correspond to the rows and columns of
the table that you want to create,

3. use ztable with this object to create the table.

186 Reproducible Research with R and RStudio Second Edition

Imagine that you want to create a results table showing the covariate
names, coefficient means, and quantiles for marginal posterior distributions
estimated from a Bayesian normal linear regression using the Zelig package
[Goodrich and Lu, 2007, Owen et al., 2013]?3 and data from the swiss data
frame. Let’s run the model:

library(Zelig)

NBModel <- zelig(Examination ~ Education, model = "normal.bayes",
data = swiss, cite = FALSE)

class(NBModel)

[1] "zelig" "normal.bayes"

Using the class command we see that the model output object in NBModel
is of both the zelig and normal .bayes classes. These class are not supported
by ztable. If you try to create a table summarizing the estimates in NBTable
you will get the following error:

library(xtable)

NBTable <- xtable(NBModel)

Error in UseMethod("xtable"): no applicable method for ’xtable’ applied
to an object of class "c(’zelig’, ’normal.bayes’)"

With unsupported class objects you have to create the summary yourself and
extract the elements that you want from it manually. A good knowledge of
vectors, matrices, and component selection is very handy for this (see Chapter
3).

First, create a summary of your output object NBModel:

23Remember you will need to have installed the ZeligBayesian package. Please see page
xix for more details.

Showing Results with Tables 187

NBModelSum <- summary(NBModel)

This creates a new object of the class summary.MCMCZelig. We're still not
there yet as this object contains not just the covariate names and so on but also
information we don’t want to include in the results table, like the estimation
formula. The second step is to extract a matrix from inside NBModelSum
called summary with the component selector ($). Remember that to find the
components of an object use the names command.

names (NBModelSum)

[1] "summary" "call" "start" "end" "thin" "nchain"

The summary matrix is where the things we want in our table are located. I
find it easier to work with data frames, so let’s also convert the matrix into a
data frame.

NBSumDataFrame <- data.frame(NBModelSum$summary)

Here is what the model summary data frame looks like:

NBSumDataFrame

Mean SD X2.5. X50. X97.5.
(Intercept) 10.13971 1.31673464 7.5578575 10.1565881 12.7058298
Education 0.57863 0.09117789 0.3963458 0.5781419 0.7609409
sigma2 34.97026 7.81259626 22.9566816 33.8781995 53.2172104

Now we have a data frame object ztable can handle. After a little cleaning up
(see the chapter’s Appendix for more details) you can use NBSumdata frame
with ztable as before to create Table 9.4.

It may take some hunting to find what you want, but a similar process
can be used to create tables from objects of virtually any class.?* Hunting for

24This process can also be useful for creating graphics as we will see in Chapter 10.

188 Reproducible Research with R and RStudio Second Edition

Mean 2.5% 50% 97.5%

(Intercept) 10.14 7.56 10.16 12.71
Education 0.58 0.40 0.58 0.76
sigma2 34.97 22.96 33.88 53.22

TABLE 9.4: Coefficient Estimates Predicting Examination Scores in Swiss
Cantons (1888) Found Using Bayesian Normal Linear Regression

what you want can be easier if you look inside of objects by clicking on them
in RStudio’s tab.

9.3.6 Creating variable description documents with xtable

You can use ztable to create a table describing variables in your data set and
insert these into Markdown documents created with the concatenate and print
(cat) command (see Section 4.4). This is useful because our data so far has
been stored in plain-text files. Unlike binary Stata or SAS data files, plain-text
data files do not include variable descriptions.

Imagine that we want to create a Markdown file with a table describing
the variables from the swiss data frame. First we will create two vectors: one
for the variable names and the other for the variable descriptions.

Variable <- names(swiss)

Description <- c("common standardized fertility measures",
"% of males involved in agriculture as occupation",
"% draftees receiving highest mark on army examination",
"% education beyond primary school for draftees",
"% 'catholic' (as opposed to 'protestant')",
"% live births who live less-than 1 year"

)

In the first line we use the names command to create a vector of the swiss data
frame’s column names. Then we simply create a vector of descriptions with
the combine command (c). Now we can combine these vectors into a matrix
and use it to create an HTML table.

DescriptionsBound <- cbind(Variable, Description)

Showing Results with Tables 189

DescriptionsTable <- xtable(DescriptionsBound)

DescriptTable <- print.xtable(DescriptionsTable, type = "html")

Finally, we can use cat to create our Markdown variable description file.

cat("# Swiss Data Variable Descriptions \n",
"### Source: Mosteller and Tukey, (1977) \n",

DescriptTable,
file = "SwissVariableDescriptions.md"
)

The first part of the cat command here is the title of the document. As we
will see in Chapter 13, hashes (#) create headers. The \n creates a new line
in the Markdown document. The next line is information on the swiss data
frame’s source. We then include the HTML table in the DescriptTable object
and save it to a file called Swiss VariableDescriptions.md.

It is convenient to simply include the creation of this table in your data
gathering makefiles and have it saved into the same directory as your data.
This way it will be easy to update as you update your data and easy to find. If
you are storing your data on GitHub it will automatically render the variable
description Markdown file and make it easy for others to read. See this book’s
makefile example for more information: http://bit.ly/1Aa0uDx.?

Chapter summary

In this chapter we have learned how to take the results from our statistical
analyses and other information from our data and dynamically present it in
LaTeX and Markdown documents with knitr/rmarkdown. In the next chapter
we will do the same thing with figures.

25The long URL is: https://GitHub.com/christophergandrud/Rep-Res-Examples/tree/
master/DataGather_Merge.

190 Reproducible Research with R and RStudio Second Edition
Appendix

Source code for cleaning NBSumDataFrame and using it to create a LaTeX
table:

Load packages
library(dplyr)
library(xtable)

Change quantile variable names

NBSumDataFrame <- rename (NBSumDataFrame, "2.5%" = X2.5.)
NBSumDataFrame <- rename (NBSumDataFrame, "50%" = X50.)
NBSumDataFrame <- rename(NBSumDataFrame, "97.5%" = X97.5.)

Reorder vartables and remove the standard deviation variable
NBTable <- NBSumDataFramel[, c("Mean", "2.5%", "50%", "97.5%")]

Create table

xtable(NBTable, caption = "Coefficient Estimates Predicting
Examination Scores in Swiss Cantons
(1888) Found Using Bayesian Normal
Linear Regression")

Note that the new variable names are in quotation marks, in contrast to the
example from Chapter 7. The quotation marks allow us to specify a name
that begins with a number and has special characters like %.

10

Showing Results with Figures

One of the main reasons that many people use R is to take advantage of its
comprehensive and powerful set of data visualization tools. Visually displaying
information with graphics is often a much more effective way of presenting
both descriptive statistics and analysis results than the tables we covered in
the last chapter.!

Nonetheless, dynamically incorporating figures with knitr/rmarkdown has
many of the same benefits as dynamically including tables, especially the
ability to have data set or analysis changes automatically cascade into your
presentation documents. The basic process for including figures in knitted
presentation documents is also very similar to including tables, though there
are some important extra considerations we need to make to properly size the
figures and be able to include interactive visualizations in our presentation
documents.

In this chapter we will first briefly learn how to include non-knitted graph-
ics in LaTeX and Markdown documents before turning to look at how to
dynamically knit R graphics into presentation documents. In the remainder
of the chapter we will look at how to actually create graphics with R including
some of the fundamentals of R’s default graphics package, as well as the gg-
plot2 [Wickham and Chang, 2015b] and googleVis [Gesmann and de Castillo,
2015] packages. In each case we will focus on how to include the figures created
by these packages in knitted presentation documents.

10.1 Including Non-knitted Graphics

Understanding how knitr/rmarkdown dynamically include figures is easier if
you understand how figures are normally included in LaTeX and Markdown.
Unlike a word processing program like Microsoft Word, in LaTeX, Markdown,
HTML, and other markup languages you don’t copy and paste figures into
your document. Instead you link to an image file outside of your markup

IThere are, of course, a number of exceptions to this rule of thumb. van Belle [2008,
Ch. 9] argues that a few numbers should be listed in a sentence, many numbers shown
in tables, and relationships between numbers are best shown with graphs. Similarly, Tufte
[2001] argues that tables tend to outperform graphics for displaying 20 or fewer numbers.
Graphics often outperform tables for showing larger data sets and relationships within the
data.

191

192 Reproducible Research with R and RStudio Second Edition

document. Typically these image files are in formats such as PDF, PNG, and
JPEG.?

There are three advantages to this method of including graphics over cut
and paste. The first is that whenever the image files are changed, the changes
are updated in the final presentation document when it is compiled, no re-
copying and pasting. The second advantage is that the images are sized and
placed with the markup code rather than pointing and clicking. This is te-
dious at first, but saves considerable time and frustration when a document
becomes larger. It also makes it easy to consistently format multiple images in
a document. Finally, because the image is not actually loaded in the markup
file, you won’t notice any sluggishness while editing the markup document
that you get in a traditional word processor if there are many images.

If the image files are in the same directory as the markup document, we
don’t need to specify the image’s file path, only its name. If they are in another
directory, we need to include additional file path information. Remember to
use relative paths when possible. In this section we will learn how to include
graphics files in documents created with LaTeX and Markdown.

10.1.1 Including graphics in LaTeX

The main way to include graphics (graphs, photos, and so on) in LaTeX
documents is to use the includegraphics command to link to image files. To
have the full range of features for includegraphics, make sure to load the
graphicx package in your document’s preamble. Imagine that we wanted to
include an image of butterflies stored in a file called HeliconiusMimicry.png
in a LaTeX-produced document.? We type:

\includegraphics[scale=0.8]{HeliconiusMimicry.png}

In the square brackets you’ll notice scale=0.8. This formats the image to be
included at 80 percent of its actual size. You can use other options such as
height to specify the height, width to specify the width, and angle to specify

2PDF: Portable Document Format, PNG: Portable Network Graphic, JPEG: Joint Pho-
tographic Experts Group.
A quick note about file formats: By default knitr creates PDF formatted figure files when
knitting R LaTeX documents. These figures, generally built with vector graphics, allow you
to zoom in on them by any amount without them becoming pixelated. This means that
your images will be crisp in PDF presentation documents. For Markdown documents, knitr
creates PNG images. PNG images are usually relatively high quality and can be rendered
directly on websites, unlike PDFs. JPEG formatted files usually take up less disk space than
PDF and PNG files. However, their quality is also worse and can often look very pixelated.
For more information, Wikipedia has a comprehensive comparison of graphics file formats
at: http://en.wikipedia.org/wiki/Comparison_of_graphics_file_formats.

3The image used here is from Meyer [2006].

Showing Results with Figures 193

the angle at which to rotate the image. You can add more than one option if
they are separated by commas. Rather than hard coding the width in exact
centimeters, you can determine its width as a proportion of the text width
using \textwidth.? For example, to set our image at 80 percent of the text
width we can type:

\includegraphics[width=0.8\textwidth]{HeliconiusMimicry.png}

figure float environment

Most often you will want to include LaTeX figures in a figure float envi-
ronment. The figure environment works almost exactly the same way as the
table environment we saw in the last chapter. It allows you to separate the
figure from the text, add a caption, and label the figure. We begin the environ-
ment with \begin{figure} [POSITION_SPEC]. POSITION_SPEC can have the
same values as we saw carlier with tables (page 172). We can then include a
caption and label command. The environment is closed with \end{figure}.
For example, to create Figure 10.1, I used the following code:”

\begin{figure} [ht]
\caption{An Example Figure in LaTeX}
\label{ExampleLaTeXFigure}

\begin{center}
\includegraphics[scale=0.8]{HeliconiusMimicry.png}
\end{center}
{\scriptsize{Source: \cite{Meyer2006}1}}
\end{figure}

Notice that after the call to end the center environment we include
{\scriptsize{Source: \cite{Meyer20063}}}. This simply includes a note
in the figure environment giving the image’s source. The note moves with the
figure and is separate from the text. The scriptsize command transforms
the text to smaller than normal size font. See Chapter 11 (Section 11.1.7) for
more details on LaTeX font sizes. The command \cite{Meyer2006} inserts a
citation from the bibliography for Meyer [2006]. We will discuss bibliographies
in more detail in the next chapter (Section 11.2).

4Note there are a number of other ways to set the size of a figure relative to a page
element. See: LaTeX Wiki Book for more details: http://en.wikibooks.org/wiki/LaTeX/
Page_Layout.

5For simplicity, this code does not include the full image’s actual file path.

194 Reproducible Research with R and RStudio Second Edition

FIGURE 10.1: An Example Figure in LaTeX

Source: Meyer [2006]

10.1.2 Including graphics in Markdown/HTML

Markdown has a similar command as LaTeX’s includegraphics. It goes like
this: ' [ALT_TEXT] (FILE_PATH). This syntax may seem strange now, but it
will hopefully make more sense when we cover Markdown hyperlinks in Chap-
ter 13 (Section 13.1.7) as this is what it is intended to imitate. ALT_TEXT
refers to HTML’s alt (alternative text) attribute. This should be a very short
description of the image that will appear if it fails to load in a web browser.
FILE_PATH specifies the image’s file path.® Here is an example using the image
we worked with before.

! [ButterflyImage] (HeliconiusMimicry.png)

Note that the file path can be a URL. You may, for example, store an image
in the Dropbox Public folder or on GitHub and use its URL to link to it in
the Markdown document.”

Markdown does not include ways to resize or re-position an image, so that
the syntax would stay simple. If you want to resize or position your image you
will have to use HTML markup. Probably the simplest way to include images
with HTML is by using the img (image) element tag. To create the equivalent
of what we just did in Markdown with HTML we type:

6You can also include a title in quotation marks after the file path. This specifies the
HTML title attribute. However, this attribute does not create a title for the image in the
way that caption does for LaTeX float figures. Instead it creates a tooltip, a small box that
appears when you place your cursor over the image. Specifying descriptive alt text is very
useful for screen readers that help visually impaired people access web content.

"For images stored on GitHub use the URL for the raw version of the file.

Showing Results with Figures 195

The src (script) attribute specifies the file path. To change the width and
height of the image we can use the width and height attributes. For example:

<img src="HeliconiusMimicry.png" alt="ButterflyImage"
width="100px" height="100px">

creates an image that is 100 pixels (px) wide by 100 pixels high.® It is also
possible to specify the alignment of figures in Markdown with a custom CSS
style file. I don’t cover how to do that here.

10.2 Basic knitr/rmarkdown Figure Options

So far we have looked at how to include images that have already been created
into our LaTeX and Markdown documents. knitr, and by extension rmark-
down, allow us to combine a figure’s creation by R with its inclusion in a
presentation document. They are tied together and update together. We use
knitr chunk options to specify how the figure will look in the presentation
document and where it will be saved. Let’s learn some of the more important
chunk options for figures.

10.2.1 Chunk options
fig.path

When you use knitr to create and include figures in your presentation docu-
ments it (1) runs the code you give it to create the figure, (2) automatically
saves it into a particular directory,” and (3) includes the necessary LaTeX
or Markdown code to include the figure in the final presentation document.
By default knitr saves images into a folder (it creates) called figure located
in the working directory.!® You can tell knitr where to save the images with
the fig.path option. Simply use the file path naming conventions suitable for
your system and include the new path in quotation marks.

8 A pixel is the smallest discrete part of images displayed on a screen. See the “pixel”
Wikipedia page for more details: http://en.wikipedia.org/wiki/Pixel.

9If a code chunk creates more than one figure, knitr automatically saves each into its
own file in the same directory.

10Fjle names are based on the code chunk label where they were created.

196 Reproducible Research with R and RStudio Second Edition

out.height

To set the height that a figure will be in the final presentation document use
the out.height option. In R LaTeX documents you can set the width using
centimeters, inches, or as a proportion of a page element. In R Markdown
documents you use pixels to set the height. For example, to set a figure’s
height in an R Markdown document to 200 pixels use out.height="'200px'.

out.width

Similarly, we can set the width of a knitr created figure using the out.width
option. The same rules apply as with out.width. For example, to have a
figure shown up at 80 percent of the text width in an R LaTeX document use:
out.width='0.8\\textwidth'. Notice that that there are two backslashes
before textwidth. As we saw earlier, the LaTeX command only has one.
However, all knitr code chunk options must be written as they would be in R.
We need to escape the backslash with the backslash escape character, i.e. use
two backslashes.

fig.align

You can set a knitted figure’s alignment using fig.align. The option can be
set to left, center, or right. To center a figure, add fig.align="'center'.

Other figure chunk options

The previous options are probably the most commonly used ways of adjust-
ing figures with knitr. However, knitr has many other chunk options to help
you adjust your figures so that they are incorporated into your presenta-
tion documents the way that you want. The option fig.cap allows you to
set a figure’s LaTeX caption and fig.1b allows you to set the label.'l As
we will see below (page 198), you can use the dev option to choose the fig-
ure’s output file format, e.g. PDF, PNG, JPEG. Please see the official knitr
code chunk options webpage for more information on figure chunk options:
http://yihui.name/knitr/options#chunk_options.

10.2.2 Global options

If you want all of your figures to share the same options—e.g. same height and
alignment—you can set global figure options at the beginning of your document
with opts_chunk$set. Imagine that we are making an R LaTeX Sweave-style
document and want all of our figures to be center aligned and 80 percent of
the text width. We type:

111n this chapter we will set these options in the markup rather than the code chunk. I
prefer doing this because knitr options need to be on the same line and so can sometimes
result in very long lists of options that are difficult to read.

Showing Results with Figures 197

<<include=FALSE>>=
opts_chunk$set. (fig.align = "center",
out.width = "0.8\\textwidth")

¢]

You can also set some global figure options, such as fig_height and
fig_width in your rmarkdown YAML header.

10.3 Knitting R’s Default Graphics

R’s graphics package—loaded by default—includes commands to create numer-
ous plot types. These include hist for histograms, pairs for scatterplot ma-
trices, boxplot for creating boxplots, and the versatile plot for creating x-y
plots—including scatterplots and bar charts depending on the data’s type.

There are many useful resources for learning how to fully utilize R’s default
graphics capabilities. These include Paul Murrell’s [2011] very comprehensive
R Graphics book. The Cookbook for R'? and Quick-R'® websites are also very
helpful. Winston Chang, the maintainer of the Cookbook for R, also has a full
book devoted to creating R graphics [2012].

In this section we are going to see how to include R’s default graphics
in our LaTeX and Markdown presentation documents. We will also see an
example of how to source the creation of a graph from a segmented analysis
file. Most of R’s default graphics capabilities create static graphics. They are
not animations or interactive. The discussion in this section is exclusively
about using static graphics with knitr/rmarkdown. Later in the chapter we
will discuss how to knit interactive graphics.

Let’s look at an example we first saw at the end of Chapter 8 (Section
8.2.3). Remember that we accessed an R source code file stored on GitHub
to create a simple scatterplot of cars’ speed and stopping distances using R’s
cars data set, which is loaded by default. We haven’t yet seen the code in the
R source file that created the plot. The variable speed contains the stopping
speed and dist contains the stopping distances. Here is the code to create the
plot:

plot(x = cars$speed, y = cars$dist,

2http://waw.cookbook-r.com/Graphs/
Bhttp://www.statmethods.net/advgraphs/

198 Reproducible Research with R and RStudio Second Edition

xlab = "Speed (mph)",
ylab = "Stopping Distance (ft)",
cex.lab = 1.5)

We select the variables from cars to plot on the z and y axes of our graph
with the component selector ($). Then we use the xlab and ylab arguments
to specify the x and y axis labels. We could have added a title for the plot
using the main argument. We didn’t do this because we will give the plot a
title in the LaTeX figure environment. The cex.lab argument increased the
labels’ font size. The argument specifically determines how to scale the labels
relative to the default size. 1.5 means 50 percent larger than the default.

Now let’s see how to create this plot with knitr and include it in a LaTeX
figure environment.

\begin{figure}[ht]
\caption{Example Simple Scatter Plot Using \texttt{plot}}
\label{BasicFigureExample}
<<echo=FALSE, fig.align='center', out.width='8cm', out.height='8cm'>>=
plot(x = cars$speed, y = cars$dist,
xlab = "Speed (mph)",
ylab = "Stopping Distance (ft)",
cex.lab = 1.5)
(¢
\end{figure}

This code produces Figure 10.2.14 If you are familiar with R graphics you will
notice that we did not need to tell knitr to save the file in a particular format.
Instead, behind the scenes it automatically saves the plot as a PDF file in a
folder called figure that is a child of the current working directory. You can
choose the figure file’s format with the dev (graphical device) chunk option.
For example, to save the figure in a PNG formatted file simply add the chunk
option dev="'PNG'. You can choose any graphical device format supported by
R. For a full list of R’s graphical devices type ?Devices into your console. One
reason you might want to change the format is to reduce your presentation
document’s file size. Using a bitmap format like PNG will create smaller files
than PDFs, though lower-quality images.

We could, of course, simply link to the original R source code file stored
on GitHub with the source_url command. Let’s look at an example of this

M Note that I did not specify the center environment. This is because it is specified in a
knitr global chunk option.

Showing Results with Figures 199

FIGURE 10.2: Example Simple Scatter Plot Using plot

o

[4

-

o

s 4

—

8
=
£ B
= o
O 8 °
o ° o
c
o]
=
@
a 38 °
g; ° ° : °
S °
Q o s
o T 7
= o
U) o
o o
° MY
8 : .
o
o
o
o
o -
T T T T T
5 10 15 20 25

Speed (mph)

with a different source code file. Remember in Chapter 6 we used a makefile
to gather data from three different sources on the internet. The CSV is called
MainData.csv and is stored on GitHub at: http://bit.1y/V0ldsf.!5 We can
download this data into R and make a scatterplot matrix with this code:

Download data
MainData <- repmis::source_data("http://bit.1ly/V0ldsf")

Subset MainData so that it only includes the year 2003
SubData <- subset(MainData, year == 2003)

Remove isoZc, country, year wvartables
Keep reg_4state, disproportionality, FertilizerConsumption
SubData <- SubDatal, c("reg_4state",
"disproportionality",
"FertilizerConsumption")]

Create a scatterplot matric

®The full version of the URL is: https://raw.githubusercontent.com/
christophergandrud/Rep-Res-Examples/master/DataGather_Merge/MainData.csv

200 Reproducible Research with R and RStudio Second Edition

pairs(x = SubData)

This is a lot of code, but you should be familiar with most of it. You will
notice that after downloading the data we cleaned it up in preparation for
plotting with the pairs command by removing data from all years other than
2003 and all of the country-year identifying variables. Finally, we created the
scatterplot matrix with pairs.

To dynamically include the plot in our final document, we don’t need
to include all of this code in a code chunk in our markup document. A
file containing the code is available on GitHub.'® So we only need to use
source_url to link to it. I've shortened the raw source code file’s URL to:
http://bit.1ly/TEOgTc. Let’s look at the syntax for knitting this into an R
Markdown file:

“*"{r, echo=FALSE, warning=FALSE, message=FALSE, out.width='500px', out.height='500px"'}

devtools: :source_url("http://bit.1ly/TEOgTc")

This code creates the plot that we see in Figure 10.3. Because we have linked
all the way back to the original data set MainData.csv, any time it is updated
by the makefile, the update will automatically cascade all the way through to
our final presentation document the next time we knit it.

10.4 Including ggplot2 Graphics

The ggplot2 package'!” [Wickham and Chang, 2015b] is probably one of the
most popular recent developments in R graphics. It greatly expands the aes-
thetic and substantive tools R has for displaying quantitative information.
Figures created with ggplot2 are (generally) static,'® so they are included in
knitted documents the same way as most of R’s default graphics.

There are a number of very good resources for learning how to use ggplot2.
These include Hadley Wickham’s ggplot2 book [2009] and article [2010]. The

16See: https://raw.githubusercontent.com/christophergandrud/Rep-Res—Examples/
master/Graphs/ScatterPlotMatrix.R.

17«GG” stands for grammar of graphics and “2” indicates that it is the second major
version of the package.

181t is possible to combine a series of figures created with ggplot2 into an animation. For
a nice example of an animation using ggplot2 see Jerzy Wieczorek’s animation of 2012 US
presidential campaigning: http://bit.1ly/UUVKka.

Showing Results with Figures

201

FIGURE 10.3: Example of a Scatterplot Matrix in a Markdown Document

Scatterplot Matrix Created from MainData.csv

16 20 2 W

0

reg_4state

emoo @

oo o
oom o

disproportionality

o

o

©

P

o ad o

FertilizerConsumption |

o
T

T T
10 15 20 25 30 3

- amos

T

—
5 40

T T T T T
o 500 1000 1500 2000

1 16 20 25 30 38 40

Wea 1500 2000

500

o

202 Reproducible Research with R and RStudio Second Edition

official ggplot2 website!® has up-to-date information. I've also found the Cook-
book for R website helpful.2°

Given that there is already extensive good documentation on ggplot2 we
are not going to learn the full details of how to use the package here. Instead,
let’s look at some examples of how to manipulate a data frame and a regres-
sion results object so that they can be graphed with ggplot2. First we will
create a multi-line time series plot. Then we will create a caterpillar plot of
regression results. Along with giving you a general sense of how ggplot2 works,
the examples illuminate how ggplot2 can be made part of a fully reproducible
research workflow.?!

Sometimes we may want to show how multiple variables change
together overtime. For example, imagine we have data on inflation
in the United States along with inflation forecasts made by the
US Federal Reserve two quarters beforehand. The data is stored on
GitHub at: https://raw.githubusercontent.com/christophergandrud/
Rep-Res-Examples/master/Graphs/InflationData.csv.?? I've loaded the
data into R and put it into an object called InflationData. It looks like this:

names (InflationData)

[1] "Quarter" "ActualInflation" "EstimatedInflation"

We want to create a plot with Quarter as the x axis, inflation as the y
axis, and two lines. One line will represent Actuallnflation and the other
EstimatedInflation. To do this we need to reshape our data so that the
inflation variables are in long format like this:

Quarter Variable Value

1969.1 Actuallnflation
1969.1 EstimatedInflation
1969.2 Actuallnflation
1969.2 EstimatedInflation

We can use the gather command from tidyr that we first saw in Chapter 7
(Section 7.1.2) to reshape the data. The variable identifying the observations

Yhttp://docs.ggplot2.org/current/

Onttp: //wiki.stdout.org/rcookbook/Graphs/

21Note that everything we do here with ggplot2 can also be done with R’s default graphics,
though the appearance will be different.

22This data is from Gandrud and Grafstrém [2015]. The example here partially recreates
Figure 1 from that paper.

Showing Results with Figures 203

in this case is Quarter. The Actuallnflation and EstimatedInflation vari-
ables (in columns two and three) are the variables that we want to gather. So
let’s gather the data:

Load tidyr
library(tidyr)

Gather InflationData
GatheredInflation <- gather(InflationData, variable,
value, 2:3)

Show GatheredInflation wvartables
head (GatheredInflation)

#i# Quarter variable value
1 1969.1 Actuallnflation NA
2 1969.2 Actuallnflation 3.5
3 1969.3 Actuallnflation 3.5
4 1969.4 Actuallnflation 3.3
5 1970.1 ActualInflation 3.7
6 1970.2 Actuallnflation 3.7

Now we have a data set we can use to create our line graph with ggplot2.

Let’s cover a few basic ggplot2 ideas that will help us understand the
following code better. First, plots are composed of layers including the coordi-
nate system, points, labels, and so on. Each layer has aesthetics, including the
variables plotted on the x and y axes, label sizes, colors, and shapes. Aesthetic
elements are defined by the aes argument. Finally, the main layer types are
called geometrics, including lines, points, bars, and text. Commands that set
geometrics usually begin with geom. For example, the geometric to create lines
is geom_line.

Load ggplot2
library(ggplot2)

Create plot
LinePlot <- ggplot(data = GatheredInflation, aes(x = Quarter,
y = value,
color = variable,
linetype = variable)) +
geom_line() +
scale_color_discrete(name = "", labels = c("Actual",
"Estimated")) +

204 Reproducible Research with R and RStudio Second Edition

scale_linetype(name = "", labels = c("Actual",

"Estimated")) +
xlab("\n Quarter") + ylab("Inflation\n") +
theme_bw(base_size = 15)

print (LinePlot)

You can see we set the x and y axes using the Quarter and value variables.
We told ggplot that elements in the geometric layer should have lines with
different colors and line types (dashed, dotted, and so on) based on the value
of variable that they represent. geom_line specifies that we want to add a
line geometric layer.?3 scale_color_discrete and scale_linetype are used
here to hide the plot’s legend title with name = "" and customize the legend’s
labels with 1labels = You can also use them to determine the specific
colors and line types you would like to use. xlab and ylab set the axes’
labels. You can add a title with ggtitle. Finally, I added theme_bw so that
the plot would use a simple black-and-white theme. We added the argument
base_size = 15 to increase the plot’s font size.

All of the code required to create this graph is on GitHub at: http://
bit.1y/VEvGJG.2* So to knit the graph like Figure 10.4 into an R Sweave-
style LaTeX document we type:

\begin{figure} [ht]
\caption{Example Multi-line Time Series Plot Created with \emph{ggplot2}}
\label{ggplot2Line}
\begin{center}
<<echo=FALSE, message=FALSE, warning=FALSE, out.width='10cm', out.height='8cm'>>=

devtools: :source_url("http://bit.1ly/VEvGIG")
Q

\end{center}
\end{figure}

The syntax for including this and other ggplot2 figures in an R Markdown
document is the same as we saw for default R graphics.

10.4.1 Showing regression results with caterpillar plots

Many packages that estimate statistical models from data in R have built-in
plotting capabilities. For example, the survival package [Therneau, 2015] has

23Remember from Chapter 3 that commands must be followed by parentheses. These
layers are commands so they need to be followed by parentheses.

24The full URL is: https://raw.githubusercontent.com/christophergandrud/
Rep-Res-Examples/master/Graphs/InflationLineGraph.R.

Showing Results with Figures 205

FIGURE 10.4: Example Multi-line Time Series Plot Created with ggplot2

6 i Actual
A | f] ---- Estimated

Inflation

T T U U
1970 1980 1990 2000

Quarter

a plot.survfit command for plotting survival curves created using event
history analysis. These plots can Of course, be knitted into presentation doc-
uments like the plots we have seen already.

However, sometimes either a package doesn’t have built-in commands for
plotting model results the way you want to and/or you want to use ggplot2 to
improve the aesthetic quality of the plots they do create by default. In either
case you can almost always create the plot that you want by first breaking
into the model results object, extracting what you want, then plotting it with
ggplot2. The process is very similar to what we did in Chapter 9 to create
custom tables (see Section 9.3.5).

To illustrate how this can work, let’s create a caterpillar plot, like Figure
10.5, showing the mean coefficient estimates and the uncertainty surrounding
them from a Bayesian normal linear regression model using the swiss data
frame. Here is our model:

library(Zelig)

NBModel2 <- zelig(Examination ~ Education + Agriculture +

206 Reproducible Research with R and RStudio Second Edition

Catholic + Infant.Mortality,
model = "normal.bayes",
data = swiss, cite = FALSE)

Remember from Chapter 9 that we can create an object summarizing our
estimation results like this:

Create summary object
NBModel2Sum <- summary(NBModel2)

Create summary data frame
NBSum2DF <- data.frame(NBModel2Sum$summary)

Show data frame

NBSum2DF

Mean SD X2.5. X50.
(Intercept) 18.646073922 5.92866455 7.0304647 18.650330129
Education 0.424875818 0.09096933 0.2425198 0.425472599
Agriculture -0.067268833 0.04251411 -0.1514878 -0.067515362
Catholic -0.079682496 0.01807005 -0.1152748 -0.079836855
Infant.Mortality -0.007320696 0.23553784 -0.4687978 -0.009074999
sigma2 19.895381339 4.56803021 12.8441084 19.254808241
X97.5.

(Intercept) 30.42487387

Education 0.60039594

Agriculture 0.01549064

Catholic -0.04403703

Infant.Mortality 0.45926573

sigma2 30.69690658

We want to use ggplot2 to create credibility intervals for each variable with
X2.5. as the minimum value and X97.5. as the maximum value. These are the
lower and upper bounds of the middle 95 percent of the estimates’ marginal
posterior distributions, i.e. the 95 percent credibility intervals.?> We will also
create a point at the mean of each estimate. To do this we will use ggplot2’s
geom_pointrange command.

25The procedures used here are also generally applicable for graphing frequentist confi-
dence intervals once you have calculated the confidence intervals. One useful command for
doing this is confint.

Showing Results with Figures 207

First we need to do a little tidying up.

Convert row.names to mormal variable
NBSum2DF$Variable <- row.names (NBSum2DF)

Keep only coeffictient estimates

This allows for a more interpretable scale

NBSum2DF <- subset (NBSum2DF, Variable != "(Intercept)")
NBSum2DF <- subset (NBSum2DF, Variable != "sigma2")

The first line of executable code creates a proper variable out of the data
frame’s row.names attribute. In this case row.names contains the names of
the variables included in the regression. The second and third executable
lines remove the estimates (Intercept) and sigma2. This allows the variable’s
coeflicient estimates to be plotted on a scale that enables easier interpretation.

Now we can create our caterpillar plot.

Load ggplot2
library(ggplot2)

Make caterpillar plot
ggplot(data = NBSum2DF, aes(x = reorder(Variable, X2.5.),
y = Mean,

ymin = X2.5., ymax = X97.5.)) +
geom_pointrange(size = 1.4) +
geom_hline(aes(intercept= 0), linetype = "dotted") +
xlab("Variable\n") + ylab("\n Coefficient Estimate") +
coord_flip() +

theme_bw(base_size = 20)

There are some new pieces of code in here, so let’s take a look. First, the
data frame is reordered from the highest to lowest value of X2.5. using the
reorder command. This makes the plot easier to read. The middle point of
the point range is set with y and the lower and upper bounds with ymin and
ymax. The geom_hline command used here creates a dotted horizontal line at
0, i.e. no effect. coord_£f1lip flips the plot’s coordinates so that the variable
names are on the y axis. We can include this plot in a knitted document the
same way as before.

208 Reproducible Research with R and RStudio Second Edition

FIGURE 10.5: An Example Caterpillar Plot Created with ggplot2

Education - I —

Catholic - -~

2 1
o
o
3

> i

Agriculture 1 .

Infant.Mortality - o

-0.3 0.0 0.3 0.6

Coefficient Estimate

Showing Results with Figures 209
10.5 JavaScript Graphs with googleVis

Markus Gesmann and Diego de Castillo’s googleVis package [2015] allows us
to use Google’s Visualization API from within R to create interactive ta-
bles, plots, and maps with Google Chart Tools. Because the visualizations are
written in JavaScript they can be included in HTML presentation documents
created by R Markdown. Unfortunately, they cannot be directly?® included in
LaTeX-produced PDFs. The animation package [Xie, 2014] does have some
limited features for including interactive visualizations in PDFs (as well as
HTML documents) and is worth investigating if you want to do this.

Basic googleVis figures

Let’s briefly look at how to make one type of figure with googleVis: a choro-
pleth map. This is created with the gvisGeoChart function. We will use this
example to illustrate how to incorporate googleVis figures into R Markdown.2”

Imagine that we want to map global fertilizer consumption in 2003 using
the World Bank data we gathered in Chapter 6. Remember that the data
was highly right skewed, so we will actually map the natural logarithm of the
FertilizerConsumption variable.?® Assuming that we have already loaded
the MainData.csv data set, here is the code:

library(googleVis)
SubData <- subset(MainData, year == 2003)

SubData <- subset(SubData, FertilizerConsumption > 0.1)

SubData$LogConsumption <- round(log(SubData$FertilizerConsumption),
digits = 1)

26 The example in this chapter is a from a screenshot.

27For demonstrations of the full range of plotting functions available, visit
the googleVis website: http://code.google.com/p/google-motion-charts-with-r/wiki/
GadgetExamples#googleVis_Examples.

28You’ll notice in the code below that we remove all values of FertilizerConsumption
less-than 0.1. This is so that we can calculate integer values with the natural logarithm. See
Section 7.1.7 for more details.

210 Reproducible Research with R and RStudio Second Edition

FCMap <- gvisGeoChart(data = SubData,
locationvar = "iso2c",
colorvar = "LogConsumption",
options = list(
colors = "['#ECE7F2', '#A6BDDB', '#2B8CBE']",
width = "780px",
height = "500px"))

The locationvar argument specifies the variable with information on each
observation’s location. Google Chart Tools can use ISO two-letter country
codes to determine each country’s location. colorvar specifies the variable
with the values to map for each country. We can determine other options
by creating a list-type object with arguments specifying characteristics such
as the map’s width, height, and colors. The colors here are written using
hexadecimal values. This is a commonly used format for specifying colors on
websites.??

To view the figure on your computer simply use googleVis’s plot command.
For example, to view our map we type:

plot (FCMap)

Note that you need to be connected to the internet to view figures created
by googleVis, otherwise your image will not be able to access the required
JavaScript files from the Google Visualization API.

Including googleVis in knitted documents

Typing print (FCMap, tag = "chart") in a knittable document would print
the entire JavaScript code needed to create the map. Much like we saw with ta-
bles produced with ztable and texreg in Chapter 9, we need to change the code
chunk results option to include the map as a map rather than as JavaScript
markup. To have the visualization show up in your HTML output, rather
than the code block, simply set the code chunk option to results='asis'.?’

For example, the full code needed to create and print FCMap is available at:

29You can also use hexadecimal values in ggplot2. The Color Brewer 2 website (http:
//colorbrewer2.org/) is very helpful for picking hexadecimal color palettes, among others.

30You can use results=’asis’ to include almost any type of JavaScript graphics. For
an example using the D3 JavaScript library and knitr see this page by Yihui Xie: http:
//yihui.name/knitr/demo/javascript/.

Showing Results with Figures 211

FIGURE 10.6: Screenshot of a googleVis Geo Chart

L

0.5 T 0.4

http://bit.1ly/VNnZxS.3! To knit the map into an R Markdown document
we type:

" {r, echo=FALSE, message=FALSE, results='asis'}

devtools::source_url("http://bit.ly/VNnZxS")

Note for Motion Charts

You may notice that Google motion charts®? do not show up in the RStudio
Preview HTML window or even in your web browser when you open the
knitted HTML version of the file. You just see a big blank space where you
had hoped the chart would be. It will show up, however, if you use the plot
command on a gvis motion chart object in the console. Motion charts can only

31The full URL is: https://raw.githubusercontent.com/christophergandrud/
Rep-Res-Examples/master/Graphs/GoogleVisMap.R.
32You can use the gvisMotionChart command to make these.

212 Reproducible Research with R and RStudio Second Edition

be displayed when they are hosted on a web server or located in a directory
‘trusted’ by Flash Player.33

The plot command opens a local server, but simply opening the HTML
file and the RStudio Preview HTML window do not. An easy way
to solve this problem is to save the HTML file in your Dropbox Public
folder and access it through the associated public URL link (see Chap-
ter 5). Publishing a motion chart on GitHub Pages also works well (see
Chapter 13). For information on how to set a directory as ‘trusted’ by
Flash Player see: http://www.macromedia.com/support/documentation/
en/flashplayer/help/settings_managerO4.html.

10.5.1 JavaScript Graphs with htmlwidgets-based packages

The number of tools for creating JavaScript graphs from R that can be knitted
into HTML files is growing rapidly. The htmlwidgets [Vaidyanathan et al.,
2015] framework is especially making the development of these tools easier. As
of this writing there are tools built on htmlwidgets for creating maps, network
graphs, time series graphs, and interactive tables, among others. Though the
syntax of each of these tools differs, they can all easily be included into R
Markdown documents. Often you simply run their core functions in a code
chunk, without needing to use an additional call to print or plot.

Chapter summary

In this chapter we have learned how to take results from our statistical analyses
and other information from our data and dynamically present them in figures.
In the next three chapters we will learn the details of how to create the LaTeX
and Markdown presentation documents we use to present the tables we created
in Chapter 9 and the figures we created in this chapter.

33This is because motion charts and annotated time line charts rely on Flash, unlike
the other Google visualizations. For more information see Markus Gesmann’s blog post at:
http://www.magesblog.com/2012/05/interactive-reports-in-r-with-knitr-and.html.

Part IV

Presentation Documents

213

11
Presenting with knitr/LaTeX

We have already begun to see how LaTeX works for presenting research re-
sults. This chapter gives you a more detailed and comprehensive introduction
to basic LaTeX document structures and commands. It is not a complete in-
troduction to all that LaTeX is capable of, but we will cover enough that you
will be able to create an entire well-formatted article and slideshow with La-
TeX that you can use to dynamically present your results. In the next chapter
(Chapter 12) we will build on these skills by learning how to use knitr to
create more complex LaTeX documents.

For basic LaTeX documents, such as short articles or simple presentations,
it may often be quicker and simpler to write the markup using an R Markdown
document and compile it to PDF with the rmarkdown package. As we will
see in Chapter 13, Markdown syntax is much simpler than normal LaTeX.
However, there are at least two reasons why it is useful to become familiar
with LaTeX syntax. First, understanding LaTeX syntax will help you debug
issues you might encounter when using rmarkdown with LaTeX that would
otherwise be mysterious if you were only familiar with Markdown. Second, R
Markdown has limited capabilities for creating more complex documents such
as books and documents with highly customizable formatting needs. Using
kntr and LaTeX can be useful in these situations.

In this chapter we will learn about basic LaTeX document structures
and syntax as well as how to dynamically create LaTeX bibliographies with
BibTeX, R, and knitr. Finally, we will look at how to create PDF beamer
slideshows with LaTeX and knitr.

Note: Chapter 11 and the following chapter are unusual for this book in
that they do not refer to both knitr and rmarkdown. Instead they focus on
capabilities largely exclusive to knitr.

11.1 The Basics

In this section we will look at how to create a LaTeX article including what
editor programs to use, the basic structure of a LaTeX document, including
preamble and body, LaTeX syntax for creating headings, paragraphs, lines,
text formatting, math, lists, footnotes, and cross-references. I will assume
that you already have a fully functioning TeX distribution installed on your
computer. See Section 1.5.1 for information on how to install TeX.

215

216 Reproducible Research with R and RStudio Second Edition

11.1.1 Getting started with LaTeX editors

As I mentioned earlier, RStudio is a fully functional LaTeX editor in addition
to being an integrated development environment for R. If you want to create
a new LaTeX document you can click File in the menu bar then New — R
Sweave.
Remember from Chapter 3 that R Sweave files

are basically LaTeX files that can include knitr code FIGURE 11.1: RStudio
chunks. You can use RStudio to knit and compile TeX Format Options

a document with the click of one button: Com-
pile PDF (T Compile POF) You can use this button
to compile R Sweave files like regular LaTeX files
in RStudio even if they do not have code chunks. If
you use another program to compile them you might
need to change the file extension from .Rnw to .tex.

3 —
1| Format = 121

T S T S

Section

Subsection

You can also insert many of the items we will cover
in this section into your documents with RStudio’s
LaTeX TeX Format button. See Figure 11.1.

There are many other LaTeX editors' and many
text editors that can be modified to compile LaTeX
documents. For example, alongside writing this book
in RStudio, I typed much of the LaTeX markup
in the Sublime Text? text editor. None of these
options have RStudio’s high-level integration with
knitr, however.3

If you are new to LaTeX you may be more com-
fortably using Lyx. Lyx has a Microsoft Word-type
interface, but creates actual LaTeX documents. It
also has knitr integration. See Chapter 3’s Appendix
for how to set up and use knitr and Lyx.

11.1.2 Basic LaTeX command syntax

Sub-Subsection

Bold
Italic
Typewriter

Quote

Bullet List
Numbered List

Description List

Verbatim

Block Quote

As you probably noticed in Part III’s examples, LaTeX commands start with a
backslash (\). For example, to create a section heading you use the \section
command. The arguments for LaTeX commands are written inside of curly
braces ({}) like this:

1Wikipedia has collated a table that comprehensively compares many of these editors:
http://en.wikipedia.org/wiki/List_of_text_editors.

2http://www.sublimetext.com/

3Andrew Wheiss has created a Sublime Text plugin called KnitrSublime. It enables
some R LaTeX integration. For more details see: https://GitHub.com/andrewheiss/
KnitrSublime.

Presenting with knitr/LaTeX 217

\section{My Section Name}

Probably one of the biggest sources of errors that occur when compiling a
LaTeX document to PDF are caused by curly brackets that aren’t closed,
i.e. an open bracket ({) is not matched with a subsequent closed bracket ().
Watch out for this and use an editor (like RStudio) that highlights brackets’
matching pairs. As we will see, unlike in R with parentheses, if your LaTeX
command does not have an argument you do not need to include the curly
brackets at all.

There are a number of places to find comprehensive lists of LaTeX com-
mands. The Netherlands TeX users group has compiled one: http://www.
ntg.nl/doc/biemesderfer/ltxcrib.pdf.

11.1.3 The LaTeX preamble & body

All LaTeX documents require a preamble. The preamble goes at the very be-
ginning of the document. The preamble usually starts with the documentclass
command. This specifies what type of presentation document you are creating—
e.g. an article, a book, a slideshow,* and so on. LaTeX refers to these as
classes. Classes specify a document’s formatting. You can add options to
documentclass to change the format of the entire document. For example,
if we wanted to create an article class document with two columns we would

type:

\documentclass [twocolumn] {article}

In the preamble you can also specify other style options and load any extra
packages you may want to use.’

The preamble is often followed by the body of your document. It is specified
with the body environment. See Chapter 9 (Section 9.2.1) for more details
about LaTeX environments. You tell LaTeX where the body of your document
starts by typing \begin{document}. The very last line of your document is
usually \end{document}, indicating that your document has ended. When
you open a new R Sweave file in RStudio it creates an article class document
with a very simple preamble and body like this:

44Slideshow” is not a valid class. One slideshow class that we discuss later is called
“beamer”.

5The command to load a package in LaTeX is \usepackage. For example, if you include
\usepackage{url} in the preamble of your document you will be able to specify URL links
in the body with the command \url1{SOMEURL}.

218 Reproducible Research with R and RStudio Second Edition

\documentclass{article}

\begin{document}

\end{document}

This is all you need to get a very basic article class document working. If
you want the document to be of another class, simply change article to
something else, a book for example.

Let’s begin to modify the markup. First we will include in the preamble the
(hyperref) for clickable hyperlinks and natbib for bibliography formatting.
We will discuss natbib in more detail below. Note that in general, and unlike
in R, almost all of the LaTeX packages you will use are installed on your
computer when you installed the TeX distribution.

Next, it’s often a good idea to include knitr code chunks that specify
features of the document as a whole. These can include global chunk options
as well as loading data and packages used throughout the document.

Then it’s a good idea to specify title information just after the document
environment begins. Use the title command to add a title, the author com-
mand to add author information, and date to specify the date.® Then include
the maketitle command. This will place your title and author information in
the body of the document. If you are writing an article you may also want to
follow maketitle with an abstract. Unsurprisingly, you can use the abstract
environment to include this.

Here is a full LaTeX article class document with all of these changes added:

Tt totshhhhts Article Preamble %hhihhhltetshshlhle
\documentclass{article}

%hhh Load LaTeX packages

\usepackage{hyperref}

\usepackage [authoryear] {natbib}

%%%h% Set knitr global options and gather data
<<Global, include=FALSE>>=

opts_chunk$set (fig.align="'center"')

6In some document classes the current data will automatically be included if you don’t
specify the date.

Presenting with knitr/LaTeX 219

Create list of packages
PackagesUsed <- c("knitr", "ggplot2", "repmis")

Load PackagesUsed and create .bib BibTeX file
Note must have repmis package installed.
repmis: :LoadandCite (PackagesUsed, file = "Packages.bib", install = FALSE)

Gather Democracy data from Pemstein et al. (2010)
For simplicity, store the URL in an object called 'url'.
url <- "http://www.unified-democracy-scores.org/files/20140312/z/uds_summary.csv.gz"

Create a temporary file called 'temp' to put the zip file into.
temp <- tempfile()

Dounload the compressed file into the temporary file.
download.file(url, temp)

Decompress the file and convert it into a data frame
class object called 'data'.
UDSData <- read.csv(gzfile(temp, "uds_summary.csv"))

Delete the temporary file
unlink (temp)

(]

%hhh Start document body
\begin{document}

Wb hhhhtotshlihle Create title Uhhhhhhhhhhhhhhhh

\title{An Example knitr LaTeX Article}

\author{Christopher Gandrud \\

Hertie School of Governance\thanks{Email: \href{mailto:gandrud@hertie-school.org}
{gandrud@hertie-school.org}}}

\date{January 2015}

\maketitle

Tl Tl tohiotols Aostract Hohlhthtotohelootsfeloots oo oo
\begin{abstract}

Here is an example of a knittable article class LaTeX document.
\end{abstract}

Dhhthhhthhts Article Main Text %hhhhhhhihhll
\section{The Graph}

I gathered data from \cite{Pemstein2010} on countries' democracy level. They call their
democracy measure the Unified Democracy Score (UDS). Figure \ref{DemPlot} shows the mean
UDS scores over time for all of the countries in their sample.

\begin{figure}
\caption{Mean UDS Scores}
\label{DemPlot}

<<echo=FALSE, message=FALSE, warning=FALSE, out.width='7cm', out.height='7cm'>>=

Graph UDS scores

ggplot (UDSData, aes(x = year, y = mean)) +
geom_point(alpha = I(0.1)) +
stat_smooth(size = 2) +
ylab("Democracy Score") + xlab("") +
theme_bw ()

Q

\end{figure}

Klohtolohtolshihhts Reproducing the Document %%h%%

220 Reproducible Research with R and RStudio Second Edition

\section{Appendix: Reproducing the Document}

This document was created using R version
\Sexpr{pasteO(version$major, ".", version$minor)}

and the R package \emph{knitr}

\citep{R-knitr}. It also relied on the R packages
\emph{ggplot2} \citep{R-ggplot2} and \emph{repmis} \citep{R-repmis}.
The document can be completely reproduced from

source files available on GitHub at:
\url{https://GitHub.com/christophergandrud/Rep-Res-Examples}.
W hhhhtets BibLliography %hhhhhhhhhhhhhhhhhhl
\bibliographystyle{apa}

\bibliography{Main.bib,Packages.bib}

\end{document}

The knitr code chunk syntax should be familiar to you from previous chapters,
so let’s unpack the LaTeX syntax from just after the first code chunk, including
the “Create Title” and “Abstract” parts. New syntax shown in later parts of
this example is discussed in the remainder of this section and the next section
on bibliographies.

First, remember that the percent sign (%) is LaTeX’s comment character.
Using it to comment your markup can make it easier to read. Second, as we
saw in Chapter 9 (Section 9.2.1), double backslashes (\\), like those after the
author’s name, force a new line in LaTeX. We will discuss the emph command
in a moment. Third, using the thanks command allows us to create a footnote
for author contact information” that is not numbered like the other footnotes
(see below). Finally, you’ll notice \href{mailto:org}}. This creates
an email address in the final document that will open the reader’s default email
program when clicked.

Finally, you may have noticed the following line:

\Sexpr{pasteO(version$major, ".", version$minor)}

This code finds the current version of R being used and prints the version
number into the presentation document.

11.1.4 Headings

Earlier in the chapter we briefly saw how to create section-level headings
with section. There are a number of other sub-section-level headings includ-
ing subsection, subsubsection, paragraph, and subparagraph. Headers are

"Frequently it also includes thank-yous to people who have helped the research.

Presenting with knitr /LaTeX 221

numbered automatically by LaTeX.® To have an unnumbered section, place
an asterisk in it like this: \section*{Unnumbered Section}. In book class
documents you can also use chapter to create new chapters and part for
collections of chapters.

11.1.5 Paragraphs & spacing

In LaTeX, paragraphs are simply created by adding a blank line between
lines. It will format all of the tabs for the beginning of paragraphs based on
the document’s class rules. As we discussed before, writing tabs in the markup
version of your document does nothing in the compiled document. They are
generally used just to make the markup easier for people to read.

Note that adding more blank lines between paragraphs will not add extra
space between the paragraphs in the final document. To specify the space
following paragraphs (or almost any line) use the vspace (vertical space)
command. For example, to add three centimeters of vertical space on a page
type: \vspace{3cm}. This gives us the following space:

Similarly, adding extra spaces between words in your LaTeX markup won’t
create extra spaces between words in the compiled document. To add hori-
zontal space use the hspace command in the same way as vspace.

11.1.6 Horizontal lines

Use the hrulefill command to create horizontal lines in the text of your
document. For example, \hrulefill creates:

Inside of a tabular environment, use the hline command rather than
hrulefill.

11.1.7 Text formatting

Let’s briefly look at how to do some of the more common types of text format-
ting in LaTeX and how to create some commonly used diacritics and special
characters.

8The paragraph level does not have numbers.

222 Reproducible Research with R and RStudio Second Edition

TABLE 11.1: LaTeX Font Size Commands

Huge
huge
LARGE
Large
large
normalsize
small
footnotesize
scriptsize

tiny

Ttalics € Bold

To italicize a word in LaTeX use the emph (emphasis) command. For
bold use textbf. You can nest commands inside of one another to
combine their effect. For example, to italicize and bold a word use:
\emph{textbf{italicize and bold}}.

Font size

You can specify the base font size of an entire document with a
documentclass option. For example, to create an article with 12-point font
use: \documentclass[12pt]{article}.

There are a number of commands to set the size of specific pieces of
text relative to the base size. See Table 11.1 for the full list. Usually a
slightly different syntax is used for these commands that goes like this:
{\SIZE_COMMAND . . . }. For example, to use the tiny size in your text use:
{\tiny{tiny sizel}}.

You can change the size of code chunks that knitr places in presenta-
tion documents using these commands. Just place the code chunk inside of
{\SIZE_COMMAND . . . }. This is similar to using the size code chunk op-
tion.

Diacritics

You cannot directly enter letters with diacritics—e.g. accent mark—into La-
TeX. For example, to create a letter ¢ with a cedilla (¢) you need to type
\c{c}. To create an ‘a’ with an acute accent (4) type: \'{a}. There are
obviously many types of diacritics and commands to include them within
LaTeX-produced documents. For a comprehensive discussion of the issue and

Presenting with knitr/LaTeX 223

a list of commands see the LaTeX Wikibook page on the topic: http://
en.wikibooks.org/wiki/LaTeX/Special_Characters. If you regularly use
non-English alphabets you might also be interested in reading the LaTeX
Wikibook page on on internationalization: http://en.wikibooks.org/wiki/
LaTeX/Internationalization.

Quotation marks

To specify double left quotation marks (*) use two back ticks (*). For double
right quotes (”) use two apostrophes (' '). Single quotes follow the same format

).

11.1.8 Math

LaTeX is particularly popular among quantitative researchers and mathemati-
cians because it is very good at rendering mathematics. A complete listing of
every math command would take up quite a bit of space.” I am briefly going to
discuss how to include math in a LaTeX document. This discussion includes
a few math syntax examples.

To include math inline with your text, place the math syntax
in between backslashes and parentheses, i.e. \(. . . \). For exam-
ple, \(s7{2} = \frac{\sum(x - \bar{x})"2}{n - 1} \) produces s?> =

_=\2
Z:ffflx) in our final document.!® We can display math separately from the
text by placing the math commands inside of backslashes and square brackets:
\[. . . \].} For example,

\L
s™{2} = \frac{\sum(x - \bar{x}) 2}n - 1}

\]

gives us:

2 Z(x_f)z

5= n—1

9See the Netherlands TeX user group list mentioned earlier for an extensive compilation
of math commands.

0Tnstead of backslashes and parentheses you can also use a pair of dollar signs ($...$).

M Equivalently, use two pairs of dollar signs ($$...$$) or the display environment.
Though it will still work in most cases, the double dollar sign math syntax may cause
errors. You can also number display equations using the equation environment.

224 Reproducible Research with R and RStudio Second Edition

11.1.9 Lists

To create bullet lists in LaTeX use the itemize environment. Each list item
is delimited with the item command. For example:

\begin{itemize}
\item The first item.
\item The second item.
\item The third item.
\end{itemize}

gives us:

e The first item.
e The second item.

e The third item.

To create a numbered list use the enumerate environment instead of itemize.
You can create sublists simply by nesting lists inside of lists like this:

\begin{itemize}
\item The first item.
\item The second item.
\begin{itemize}
\item A sublist item
\end{itemize}
\item The third item.
\end{itemize}

which gives us:

e The first item.

e The second item.
— A sublist item

o The third item.

Presenting with knitr/LaTeX 225
11.1.10 Footnotes

Plain, non-bibliographic footnotes are easy to create in LaTeX. Simply place
\footnote{ where you would like the footnote number to appear in the text.
Then type the footnote’s text. Of course, remember to close the footnote with
a }. LaTeX does the rest, including formatting and numbering.

11.1.11 Cross-references

LaTeX will also automatically format cross-references. We were already par-
tially introduced to cross-references in chapters 9 and 10. At the place where
you would like to reference, add a label such as \label{ACrossRefLabel}.
It doesn’t really matter what label you choose, though make sure they are
not duplicated in the document. Also, it can be a good idea to use the same
conventions that we learned for labeling R objects (see Section 3.1.1). Then
place a ref command (e.g. \ref{ACrossRefLabel) at the place in the text
where you want the cross-reference to be.

If you place the label on the same line as a heading command, ref will
place the heading number. If label is in a table or figure environment
you will get the table or figure number. You can also use pageref instead of
ref to include the page number. Finally, loading the hyperref package makes
cross-references (or footnote) clickable. Clicking on them will take you to the
items they refer to.

11.2 Bibliographies with BibTeX

LaTeX can take advantage of very comprehensive bibliography-making capa-
bilities. All major TeX distributions come with BibTeX. BibTeX is basically
a tool for creating databases of citation information. In this section, we are
going to see how to incorporate a BibTeX bibliography into your LaTeX doc-
uments. Then we will learn how use R to automatically generate a bibliogra-
phy of packages used to create a knitted document. For more information on
BibTeX syntax see the LaTeX Wikibook page on Bibliography management:
http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management.

11.2.1 The .bebd file

BibTeX bibliographies are stored in plain-text files with the extension .bib.
These files are databases of citations.'? The syntax for each citation goes like
this:

12The order of the citations does not matter.

226 Reproducible Research with R and RStudio Second Edition

@DOCUMENT_TYPE{CITE_KEY,
title = {TITLE},
author = {AUTHOR},

=4{. . .}

DOCUMENT _TYPE specifies what type of document—article, book, webpage, and
so on—the citation is for. This determines what items the citation can and
needs to include. Then we have the CITE_KEY. This is the reference’s label
that you will use to include the citation in your presentation documents.
We’ll look more at this later in the section. Each citation must have a unique
CITE_KEY. A common way to write these keys is to use the author’s surname
and the publication year, e.g. Donoho2009. The cite key is followed by the
other citation attributes such as author, title, and year. These attributes
all follow the same syntax: ATTRIBUTE = {. . .}.

It’s worth taking a moment to discuss the syntax for the BibTeX au-
thor attribute. First, multiple author names are separated by and. Second,
BibTeX assumes that the last word for each author is their surname. If you
would like multiple words to be taken as the “surname” then enclose these
words in curly brackets. If we wanted to cite the World Bank as an author
we write {World Bank}; otherwise it will be formatted “Bank, World” in the
presentation document.

Here is a complete BibTeX entry for Donoho et al. [2009]:

@article{Donoho2009,
author = {David L Donoho and Arian Maleki and Morteza
Shahram and Inam Ur Rahman and Victoria Stodden},
title = {Reproducible research in computational harmonic
analysis},
journal = {Computing in Science & Engineering},
year = {2009},
volume = {11},
number = {1},
pages = {8--18}

Presenting with knitr/LaTeX 227

Each item of the entry must end in a comma, except the last one.!3

11.2.2 Including citations in LaTeX documents

When you want to include citations from a BibTeX file in your LaTeX docu-
ment you first use the bibliography command. For example, if the BibTeX
file is called Main.bib and it is in the same directory as your markup document,
then type: \bibliography{Main.bib}. You can use a bibliography stored in
another directory; just include the appropriate file path information. Usually
bibliography is placed right before \end{document} so that it appears at
the end of the compiled presentation document.

You can also specify how you would like the references to be formatted
using the bibliographystyle command. For example, this book uses the
American Psychological Association (APA) style for references. To set this T
included \bibliographystyle{apa} directly before bibliography. The de-
fault style'* is to number citations (e.g. [1]) rather than include author-year
information'® used by the APA. You will need to include the LaTeX package
natbib in your preamble to be able to use author-year citation styles. This
book includes \usepackage [authoryear] {natbib} in its preamble.

Place the cite command in your document’s text where you want to
place a reference. You include the CITE_KEY for the reference in this com-
mand, e.g. \cite{Donoho2009}. You can include multiple citations in cite,
just separate the CITE_KEYs with commas. You can add options such as the
page numbers or other text to a citation using square brackets ([]). For
example, if we wanted to cite the tenth page of Donoho et al. [2009] we
type: \cite[10]{Donoho2009}. The author-year style in-text citation that
this produces looks like this: [Donoho et al., 2009, 10]. You can add text
at the beginning of a citation with another set of square brackets. Typing
\cite[see] [10]{Donoho2009} gives us: [see Donoho et al., 2009, 10].

If you are using an author-year style you can use a variety of natbib com-
mands to change what information is included in the parentheses. For a se-
lection of these commands and examples, see Table 11.2.

11.2.3 Generating a BibTeX file of R package citations

Researchers are pretty good about citing others’ articles and data. However, ci-
tations of R packages used in analyses is very inconsistent. This is unfortunate
not only because correct attribution is not being given to those who worked
to create the packages, but also because it makes reproducibility harder. Not
citing packages obscures important steps that were taken in the research pro-
cess, primarily which package versions were used. Fortunately, there are R

13This is very similar to how we create vectors in R, though in BibTeX you can actually
have a comma after the last attribute.

141t is referred to in LaTeX as the plain style.

15This is sometimes referred to as the “Harvard” style.

228 Reproducible Research with R and RStudio Second Edition

TABLE 11.2: A Selection of natbib In-text Citation Style Commands

Command Example Output
\cite{Donoho2009} Donoho et al. [2009]
\citep{Donoho2009} [Donoho et al., 2009]
\citeauthor{Donoho2009} Donoho et al.
\citeyear{Donoho2009} 2009
\citeyearpar{Donoho2009} [2009]

tools for quickly and dynamically generating package BibTeX files, including
the versions of the packages you are using. They will automatically update the
citations each time you compile your document to reflect any changes made
to the packages.

You can automatically create citations for R packages using the citation
command inside of a code chunk. For example, if you want the citation infor-
mation for the xtable package you simply type:

citation("xtable")

##

To cite package 'xtable' in publications use:

##

David B. Dahl (2014). xtable: Export tables to LaTeX or HTML. R
package version 1.7-4. http://CRAN.R-project.org/package=xtable
H##

A BibTeX entry for LaTeX users is

##

@Manual{,

title = {xtable: Export tables to LaTeX or HTML},
author = {David B. Dahl},

year = {2014},

note = {R package version 1.7-4},

#it url = {http://CRAN.R-project.org/package=xtable},
)

##

ATTENTION: This citation information has been auto-generated from
the package DESCRIPTION file and may need manual editing, see
'help("citation")'.

This gives you both the plain citation as well as the BibTeX version. If you only
want the BibTeX version of the citation you can use the toBibtex command.

Presenting with knitr/LaTeX 229

toBibtex(citation("xtable"))

@Manuald{,

title = {xtable: Export tables to LaTeX or HTML},
author = {David B. Dahl},

year = {2014},

note = {R package version 1.7-4},

url = {http://CRAN.R-project.org/package=xtable},
¥

The knitr package creates BibTeX bibliographies for R packages with the
write_bib command. Let’s make a BibTeX file called Packages.bib containing
citation information for the xtable package.

knitr::write_bib("xtable",
file = "Packages.bib")

write_bib automatically assigns each entry a cite key using the format
R-PACKAGE_NAME, e.g. R-xtable.

Warning: knitr’s write_bib command currently does not have the ability
to append package citations to an existing file, but instead writes them to a
new file. If there is already a file with the same name, it will overwrite the file.
So, be very careful using this command to avoid accidental deletions. It is a
good idea to have write_bib always write to a file specifically for automati-
cally generated package citations. You can include more than one bibliography
in LaTeX’s bibliography command. All you need to do is separate them with
a comma.

\bibliography{Main.bib,Packages.bib}

We can use these techniques to automatically create a BibTeX file with
citation information for all of the packages used in a research project. Simply
make a character vector of the names of packages that you would like to
include in your bibliography. Then run this through write_bib.

You can make sure you are citing all of the key packages used in a knitted
document by (a) creating a vector of all of the packages and then (b) using this
in the following code to both load the packages and write the bibliography:

230 Reproducible Research with R and RStudio Second Edition

PackagesUsed <- c("ggplot2", "knitr",
"xtable", "Zelig")

lapply (PackagesUsed, library,
character.only = TRUE)

knitr::write_bib(PackagesUsed,
file = "Packages.bib")

In the first executable line we just create our list of packages to load and cite.
The next command is lapply (list apply). This applies the function library
to all of the items in PackagesUsed. character.only = TRUE is a library
argument that allows us to use character string versions of the package names
as R sees them in the PackagesUsed vector, rather than as objects (how we
have used library up until now). If you include these commands in a code
chunk at the beginning of your knitted document, then you can be sure that
you will have a BibTeX file with all of your packages.

The full LaTeX document example I showed you earlier uses the
LoadandCite command from the repmis package. This simplifies the process
of loading and citing R packages.'6

11.3 Presentations with LaTeX Beamer

You can make slideshow presentations with LaTeX. Creating a presentation
with a markup language can take a bit more effort than using a WYSIWYG
program like Microsoft PowerPoint or Apple’s Keynote. However, combining
LaTeX and knitr can make fully reproducible presentations that dynamically
create and present results. I have found this particularly useful in my teaching
as dynamically produced presentations allow me to provide my students with
fully replicable examples of how I created a figure on a slide, for example.
knitr also makes it easy to beautifully present code examples.

One of the most popular LaTeX tools for slideshows is the beamer class.
When you compile a beamer class document, a PDF will be created where
every page is a different slide (see Figure 11.2). All major PDF viewer pro-
grams have some sort of “View Full Screen” option to view beamer PDFs as

161t can also install the packages if the option install = TRUE. You can have it install
specific package versions by entering the version numbers with the versions argument. This
is very useful for enabling the replication of analyses that rely on specific package versions.

Presenting with knitr/LaTeX 231

full screen slideshows. Usually you can navigate through the slides with the
forward and back arrows on the keyboard.

In this section we will take a brief look at the basics of creating slideshows
with beamer, highlighting special considerations that need to be made when
working with beamer and knitr. A full example of a knittable beamer presen-
tation with illustrations of the many of the points discussed here is printed at
the end of the chapter.

11.3.1 Beamer basics

knitr largely works the same way in LaTeX slideshows as it does in article or
book class documents. There are a few differences to look out for.

The Beamer preamble

You use documentclass to set a LaTeX document as a beamer slideshow. You
can also include global style information in the preamble by using the com-
mands usetheme, usecolortheme, useinnertheme, useoutertheme. For a
fairly comprehensive compilation of beamer themes see the Hartwork’s Beamer
theme matrix: http://www.hartwork.org/beamer-theme-matrix/.

Slide frames

After the preamble, you start your document as usual by beginning the
document environment. Then you need to start creating slides. Individual
beamer slides are created using the frame environments. Create a frame title
using frametitle.

\frame{
\frametitle{An example frame}

Note that you can also use the usual \begin{frame} . . \end{frame} syn-
tax. Unlike in a WYSIWYG slide show program, you will not be able to tell if
you have tried to put more information on one slide than it can handle until
after you compile the document.”

170ne way to deal with frames that span multiple slides is to use the allowframebreaks
command, i.e. \begin{frame}[allowframebreaks] .

232 Reproducible Research with R and RStudio Second Edition

FIGURE 11.2: Knitted Beamer PDF Example

Confidence Intervals in R for Objects of Class 1m

To calculate the confidence intervals for regression coefficients in R
use the confint command.

Find confidence intervals
CI <~ confint(M1)

CI

2.6 % 97.6 Y%
(Intercept) 24.091 47.379
duration =-1.124 2.4B4
condused =10.662 9.263
wheels 5.122 15.788

Graphically
-
a0
z
E =
£
€ ®
]
£ e I
8 o P
-
(IHIBIIUGD'.:I oundlusw ouu;liun whslals

The presentation in this example was created using a custom beamer theme available at: https:

//GitHub.com/christophergandrud/Make-Projects/tree/master/Rnw_Lecture.

Presenting with knitr/LaTeX 233

Title frames

One important difference from a regular LaTeX article is that instead of using
maketitle to place your title information, in beamer you place the titlepage
inside of a frame by itself.

Sections & outlines

We can use section commands in much the same way as we do in other
types of LaTeX documents. Section commands do not need to be placed
inside of frames. After the title slide, many slideshows have a presenta-
tion outline. You can automatically create one from your section head-
ings using the tableofcontents command. Like the titlepage command,
tableofcontents can go on its own frame, i.e.

Whh Title slide
\frame{
\titlepage

%% Table of contents slide
\frameq{
\frametitle{Outline}
\tableofcontents

Make list items appear

Lists work the same way in beamer as they do in other LaTeX document
classes. They do have an added feature in that you can have each item appear
as you progress through the slide show. After \item, place the number of
the order in which the item should appear. Enclose the number in < ->. For
example,

\begin{itemize}
\item<1-> The first item.
\item<2-> The second item.
\item<2-> The third item.
\end{itemize}

234 Reproducible Research with R and RStudio Second Edition

In this example the first item will appear before the next two. These two will
appear at the same time.

11.3.2 knitr with LaTeX slideshows

knitr code chunks have the same syntax in LaTeX slideshows as in other
LaTeX documents. You do need to make one change to the frame options,
however, to include highlighted knitr code chunks on your slides. You should
add the fragile option to the frame command.'® Here is an example:

\begin{frame} [fragile]
\frametitle{An example fragile frame.}

\end{frame}

Here is a complete knittable beamer example:

\documentclass{beamer}
\begin{document}

%% Title page inforamtion
\title{Example Beamer/\emph{knitr} Slideshow}
\author{\href{mailto:gandrudGhertie-school.org}{Christopher Gandrud}}

%%% Title slide
\frame{

\titlepage
}

%% Table of contents slide

\frame{
\frametitle{Outline}
\tableofcontents

}

%hY%h The code
\section{Access the code}
\begin{frame} [fragile]
\frametitle{Access the code}
The code to create the following figure is available online.

To access it we can type:
<<eval=FALSE>>=

8For a detailed discussion of why you need to use the fragile option with the
verbatim environment that knitr uses to display highlighted text in LaTeX documents
see this blog post by Pieter Belmans: http://pbelmans.wordpress.com/2011/02/20/
why-latex-beamer-needs-fragile-when-using-verbatim/ (posted 20 February 2011).

Presenting with knitr/LaTeX 235

devtools: :source_url("http://bit.1ly/VRKphr")
d
\end{frame}

%%k The figure
\section{The Figure}
\begin{frame}[fragile]
\frametitle{The resulting figure}
<<echo=FALSE, message=FALSE, out.width='\\textwidth', out.height='0.8\\textheight'>>=

devtools: :source_url("http://bit.1ly/VRKphr")
d
\end{frame}

\end{document}

In Chapter 13 we will see how to use the rmarkdown package to create
beamer presentations with the much simpler Markdown syntax.

Chapter summary

In this chapter we have learned the nitty-gritty of how to create simple La-
TeX documents—articles and slideshows—that we can embed our reproducible
research in using knitr. In the next chapter we look at how to create more
complex LaTeX documents, including theses, books, and batch reports.

12

Large knitr /La’TeX Documents: Theses,
Books, and Batch Reports

In the previous chapter we learned the basics of how to make LaTeX docu-
ments to create and present research findings. So far we have only learned
how to create short documents, like articles and slideshows. For longer and
more complex documents, such as theses and books, a single LaTeX markup
file can become very unwieldy very quickly, especially when it includes knitr
code chunks as well. Ideally we would segment the markup file into individual
chapter files and then bring them all together when we compile the whole
document. This would allow us to benefit from a modular file structure while
producing one presentation document with continuous section and page num-
bering. To do this we can take advantage of LaTeX and knitr to separate
markup files into manageable pieces. Like directories, these pieces are called
child files, which are combined using a parent document.

Many of these tools can also be used to create batch reports: documents
that present results for a selected part of a data set. For example, a researcher
may want to create individual reports of answers to survey questions from
interviewees with a specific age. In the latter part of this chapter we will rely
on knitr and the brew package [Horner, 2011] to create batch reports.

In this chapter we will first briefly discuss how to plan a large document’s
file structure. We will then look at three methods for including child docu-
ments into parent documents. The first is very simple and uses the LaTeX com-
mand input. The second uses knitr to include knittable child documents. The
final method is a special case of the knitr method that uses the command-line
program Pandoc to convert child documents written in non-LaTeX markup
languages and include them into a LaTeX parent. After this we will look at
how to create batch reports.

12.1 Planning Large Documents

Before discussing the specifics of each of these methods, it’s worth taking a
moment to carefully plan the structure of our child and parent documents.
Books and theses have a natural parent-child structure, i.e. they are single
documents comprised of multiple chapters. They often include other child-like
features such as title pages, bibliographies, figures, and appendices. You could
include most of these features directly into one markup file. But this file would

237

238 Reproducible Research with R and RStudio Second Edition

become very large and unwieldy. It would be difficult to find the one part or
section that you want to edit. If your presentation markup files are difficult
to navigate, they are difficult to reproduce.

Instead of one long markup file, you can break the document at natural
division points, like chapters, into multiple child documents. These can then
be combined with a parent document. The parent document acts like the
skeleton that organizes the children in a specific order. The parent document
can be compiled and all of the children will be in the right place. In LaTeX,
a parent document will include the preamble where the document class (book
for example) is set and all of the necessary LaTeX packages are loaded. It
also includes knitr global options, the maketitle, \begin{document} and
\end{document}, and the bibliography. When you compile the parent doc-
ument you will compile the entire document. Notice that if the parent docu-
ment contains the preamble and so on, that the children cannot contain this
information as well. This can create some issues if you only want to compile
one chapter rather than the whole document. We will see how to overcome
this problem with knitr later in the chapter.

To make your many child and parent documents manageable, it is a good
idea to store your child files in a subdirectory of the folder storing the parent
file. This book was created using a knittable parent and child structure, so
please see the markup files on GitHub for a complete example of how to use
knitr with large documents.! When segmenting your presentation documents
into parents and children, the remainder of your research project structure
can stay largely the same as we have seen so far.

12.2 Large Documents with Traditional
LaTeX

Imagine that we are writing a book with three chapters. No part of the
document includes knitr code chunks. We can split the book into three
child documents and place them in a subdirectory of the parent document’s
folder called Children. The child documents should not contain a preamble,
\begin{document}, or \end{document}. Because they are chapters, we will
begin the documents simply with the chapter heading. For example, the
chapter in this book has:

\chapter{Large \emph{knitr}/LaTeX Documents: Theses, Books, \& Batch Reports}\label{LargeDocs}

As we saw earlier, the 1abel command is used for cross-referencing.

1See: https://github.com/christophergandrud/Rep-Res-Book/tree/master/Source.

Large knitr /LaTeX Documents: Theses, Books, and Batch Reports 239

12.2.1 Inputting/including children

Now in the parent document we can place the input command where we
would like the child to show up in the final document. If we want there to be a
clear page on either side of the included document we should use the include
command instead. In the input or include command, we simply place the
child document’s file path. Here is an example parent document with three
child documents (Chapterl.tex, Chapter2.tex, and Chapter3.tex) all located in
a subdirectory of the parent document called Children:

SIS TSI SLSS S Article Preamble LAL%hAIh I SIS Sd,
\documentclass{book}

%hhkh Load LaTeX packages
\usepackage{hyperref}
\usepackage{makeidx}
\usepackage [authoryear]{natbib}

%hhk% Start document body
\begin{document}

Tl lotolototslolototetote Create title %htshislelstslolslotslotstslols
\title{An Example LaTeX Book}
\author{Christopher Gandrud}

\maketitle

Tt lotolototofotetotete Erontmatter %htttslsslolstslolslotslotslslols
\tableofcontents

\listoffigures

\listoftables

%%kl Start index

\makeindex

Dbk hhhhh% Input child documents %hhAhhhhhk
%%h% Chapter 1
\input{Children/Chapterl.tex}

%%h% Chapter 2
\input{Children/Chapter2.tex}

%hh% Chapter 3

240 Reproducible Research with R and RStudio Second Edition

\input{Children/Chapter3.tex}

Totolototototofote Bibliography %leletststetstetsletstetelstotslotstets
\bibliographystyle{apa}
\bibliography{Main.bib,Packages.bib}

Tololoolotototots InA@X %ot oo lototototototototo oo tototstoots oot o
\clearpage
\printindex

\end{document}

12.2.2 Other common features of large documents

There are some other commands in this example parent document that we
have not seen before. These commands create the book’s front matter—tables
of contents, lists of figures and tables—as well as blank pages and the book’s
index.

Table of contents

If you are using LaTeX’s section headings (e.g. chapter, section) you can
automatically generate a table of contents with the tableofcontents com-
mand. We saw an example earlier when we created a beamer slideshow. Simply
place this command where you want the table of contents to appear. Usually
this is after the maketitle command near the beginning of the document.

Lists of figures and tables

It is also common for large documents to include lists of its figures and tables.
Usually these are placed after the table of contents. LaTeX will automatically
create these lists from the captions you place in table and figure envi-
ronments. To create these lists, use the listoffigures and listoftables
commands.

Blank Pages

Sometimes we want to make sure that an index, a bibliography, or some other
item begins on a new page. To do this, simply place the clearpage command
directly before the item.

Large knitr /LaTeX Documents: Theses, Books, and Batch Reports 241

Index

You can automatically create an index with the makeidz (make index) LaTeX
package. To set up this package, include it in your preamble. Then, near
the beginning of your document, enable the index by placing \makeindex.
You will probably want the actual index to be printed near the end of the
document. To do this, place \printindex after the bibliography or somewhere
else before \end{document}. Throughout the child documents, you can use
\index{INDEX_KEY} at places that you would like the index to refer to. For
example, if we wanted to create an index entry for this spot in this book with
the INDEX_KEY “indices” we type: \index{indices}.

12.3 knitr and Large Documents

LaTeX’s own parent-child functions are very useful if you are creating plain,
non-knittable documents. For knittable documents we need to use knitr’s
parent-child options. Not only do these allow us to include knittable children
in parent documents, it also allows us to knit each child document separately.
This can be very useful working on document drafts as we don’t need to com-
pile the whole document every time we want to look at changes made in one
chapter.

12.3.1 The parent document

Like regular LaTeX parent documents, knittable parent documents include
commands to create the preamble, front matter, bibliography, and so on.
knitr global chunk options and package/data loading should also be set at
the beginning of the parent document if you want them to apply to the entire
thing.

Rather than using the input or include commands, we use the child
code chunk option to include child documents with knitr. The child option
simply takes as its value the child document’s file path. For example:

<<SetChild, child='Children/Chapterl.Rnw', include=FALSE>>=
Q

We can include the other child documents either in their own code chunks or
all in one chunk as a character vector. You can also use Sexpr with the option
knit_child.

242 Reproducible Research with R and RStudio Second Edition

\Sexpr{knit_child('Children/Chapterl.Rnw')}

This is the same thing as using the child option in a code chunk. Note also
that you can continue to use input, include, and code chunks with the child
option in the same document if you like.

When you have your child code chunks set up in your parent document,
just knit the parent like you would any other knittable file. The knittable
children will be knit and included every time you knit the parent document.

12.3.2 Knitting child documents

You can use knitr to compile individual child documents. To do this, place a
code chunk at the beginning of the child document. In the code chunk (not as a
option) use the set_parent command to specify where the parent file is. Here
is an example child file with a parent located at /EzampleProject/Parent. Rnw:

Tl hlshthhds Set parent %hhhhhhihlh
<<SetParent, include=FALSE>>=
set_parent (' /ExampleProject/Parent.Rnw')
@

NIl hhhhdh Chapter heading %%k
\chapter{The first chapter}

This chapter is very short

You can also use set_parent with Sexpr. When you have set the parent
document you can knit the child document by itself. In addition to knitting
the code chunks, knitr will include all of the preamble information from the
parent document as well as \begin{document} and \end{document}.2

Other markup languages

We can use knitr’s parent-child functions in any of the markup languages it
supports. For example, we can knit R Markdown children into R Markdown
parent documents. We don’t look at specific examples in this book. The knitr

21f you are using custom LaTeX style files (they have the file extension .sty) then knitr
won’t include these in the knitted document unless you include a copy of the style file in
the child document’s directory.

Large knitr /LaTeX Documents: Theses, Books, and Batch Reports 243

options syntax is the same, but as usual, syntax for opening and closing the
code chunks is specific to the markup language.

12.4 Child Documents in a Different Markup
Language

Because knitr is able to run not only R code but also command-line programs,
you can use the Pandoc program to convert child documents written in a
different markup language into the primary markup language you are using
for your document. If you have Pandoc installed on your computer,® you can
call it directly from your parent document by including the Pandoc commands
in a code chunk with the engine option set to either 'bash' or 'sh'.?

For example, the Stylistic Conventions (page xvii) part of this book is
written in Markdown. The source file is called StylisticConventions.md and
is in a subdirectory of the parent’s directory called: Children/FrontMatter It
was faster to write the list of conventions using the simpler Markdown syntax
than LaTeX, which as we saw has a more complicated way of creating lists.
However, I wanted to include this file in the LaTeX-produced book. Pandoc
can convert the Markdown document into a LaTeX file. This file can then be
input into the main document with the LaTeX command input.

In the parent document I added a code chunk with the following command
to convert the Markdown syntax in StylisticConventions.md to LaTeX and
save it in a file called StyleTemp.tez.

<<StyleConventions, include=FALSE, engine='sh'>>=

Use pandoc to convert MD to TEX

pandoc Children/FrontMattter/StylisticConventions.md -f markdown
-t latex -o StyleTemp.tex

¢

% Input converted StyleTemp document
\input{StyleTemp.tex}

The options -f markdown and -t latex tell Pandoc to convert Stylistic-
Conventions.md from Markdown to LaTeX syntax. -o StyleTemp.tex in-

3Pandoc installation instructions can be found at: http://johnmacfarlane.net/pandoc/
installing.html.

4 Alternatively, you can run Pandoc in an R code chunk using the system com-
mand. For example: system("pandoc Children/FrontMattter/StylisticConventions.md
-f markdown -t latex -o StyleTemp.tex"). knitr also has a pandoc command that is a
wrapper for converting Markdown documents to other formats with Pandoc.

244 Reproducible Research with R and RStudio Second Edition

FIGURE 12.1: The brew + knitr Process

LoopBrew Knit Compile
E;:ev;tDoc- Knittable
Document Markup .
(Markup Presentation
é é - é
+ Brew (Markup Only Doc Document
+ Code ument
+ Code Chunks)
Chunks)

structs Pandoc to save the resulting LaTeX markup to a new file called
Style Temp.tex.

T only need to include a backslash (\) at the end of the first line because
I wanted to split the code over two lines. The code wouldn’t fit on this page
otherwise. The backslash tells the shell not to treat the following line as a
different line. Unlike in R, the shell only recognizes a command’s arguments
if they are on the same line as the command.

You'll notice that after the code chunk we use input to include the new
StyleTemp.tex document. Note that using this method to include a child doc-
ument that needs to be knit will require extra steps not covered in this book.

12.5 Creating Batch Reports

When we create batch reports we want to somehow subset a data set into
multiple pieces and use these pieces as the input for knitr code chunks in
different presentation documents for each subset of the data set. The brew
package [Horner, 2011] is maybe the most popular tool for creating batch
reports in R. Using brew with multiple subsets of a data set adds two steps
to the process of creating knitr presentation documents (see Figure 12.1):

1. Create a brew template document.

2. Create a function to subset the data, brew, and knit each file.

knitr’s knit_expand command can also be used to create batch reports.
Because brew is the dominant way to create batch reports in R and cur-
rently has more capabilities than knit_expand we will cover brew rather than
knit_expand in detail.

Imagine that we are using the MainData data set discussed in the previous
chapters and we want to create a LaTeX document for each country displaying
its average fertilizer consumption (FertilizerConsumption).?

5The files needed to create this example are available at: http://bit.1y/XJbyCK.

Large knitr /LaTeX Documents: Theses, Books, and Batch Reports 245

First, let’s create a brew template document. This document will include
all of our markup and the code chunks we want in our knitr document. There is
one small difference from regular knittable documents: it will use brew syntax
to include information from the subsetted data. Text in a brew template doc-
ument is printed ‘as is’ when we brew it unless it is between brew’s delimiters.
The delimiters are:®

o A\# . . . ¥> Comment delimiter, i.e. contents are thrown away when
brewed.

e <% . . . %>:R functions inside the delimiters are run, but the results aren’t
printed.

e <%= . . . %> Contents are printed.

In the following example we use the latter two. Here is our brew template:

\documentclass{article}
\begin{document}

% Create numeric vector
<% NewFC <- FC %>

{\LARGE <%= Name %>}

The mean fertilizer consumption for <J= Name %> is
\Sexpr{round (mean(NewFC, na.rm = TRUE), digits = 1)} kilograms
per hectare of arable land.

\end{document}

There are a few things to note. The line <% NewFC <- FC %> will create a
vector called NewFC from the object FC. As we will see when we create
the brew function, FC contains the values of FertilizerConsumption for each
country. We need to put FC into a new object because if we typed <%= FC %>
brew would print the numbers literally, not in a numeric vector like we need

6Note that the spaces between the delimiter and its contents are important.

246 Reproducible Research with R and RStudio Second Edition

later for the mean command. <%= Name %> prints the country name in the
subsetted data. We’ll see how to create Name in the brew function below.
We save this template in BatchReports/Template, i.e. in a subdirectory of
BatchReports called Template. Let’s give it the file name BrewTemplate. Rnw.

Now let’s create the R code to subset the data, brew, and knit the reports:

Set working directory
setwd ("/BatchReports")

Download Data
Load repmis
library(repmis)

Download data
MainData <- source_data("http://bit.ly/V0ldsf")

Create wvector of country names
COUNTRY <- as.character(unique(MainData$country))

Create BatchReports Function
BatchReports <- function(Name){
Create file names for individual Teports
Remove white space in country names
CountryNoWhite <- gsub(" ", "", x = Name)
KnitFile <- paste(CountryNoWhite, ".Rnw", sep = "")

Subset data
SubData <- subset(MainData, country == Name)

Create vector of the country's fertilizer consumptiion
FC <- SubData$FertilizerConsumption

Brew and Knit
brew: :brew("Template/BrewTemplate.Rnw", KnitFile)
knitr::knit2pdf (KnitFile)

Run function and cleanup
lapply (COUNTRY, BatchReports)

Keep only pdf reports
unlink(c("*.aux", "*.log", "*.Rnw", "x.tex"))

Large knitr /LaTeX Documents: Theses, Books, and Batch Reports 247
Ok, this is a lot of new code. Let’s go through it step by step:

1. Set the working directory to /BatchReports.

2. Download MainData.csv using the source_data function, as we’ve
done before.

3. Create a vector for the country names in the data. We will use this
vector to subset the data.

4. Create a function called BatchReports for subsetting the data,
brewing it, and knitting it.

e The function command allows us create a new function.” Ar-
guments are specified in parentheses (these are also called the
formals) and R expressions are put in the curly brackets that
denote the function’s body. The expressions do things with the
arguments. Our argument here is Name and the contents of the
curly brackets subset, brew, and knit the data according to
Name’s value.®

e An important step in the BatchReports function is creating
a new name to give our brewed and knit files. Some country
names like “United Arab Emirates” have white spaces in them.
We cannot run LaTeX on a file with a name containing white
spaces. We remove the white spaces with the gsub command,
i.e. we substitute a space with no white space. We then use
the paste command to create a name that will be used for the
brewed file. knitr will automatically create a name for the final
PDFs.

5. lapply allows us to run our BatchReports function separately for
every value of the COUNTRY vector. BatchReport’s Name argu-
ment takes the value COUNTRY. Note: it is important to end the
BrewTemplate. Rnw with a blank line for lapply to work correctly.

6. Finally, we use the unlink command to delete all of the ancillary
files used to create the final batch report PDFs. Always be care-
ful with the unlink command as it permanently deletes files. Be-
cause we used the asterisk wildcard (see Section 6.1.2.1), unlink will
delete all files in the working directory with the extensions .aux,
.log, .Rnw and .tex.

Figure 12.2 shows you a sample of what the final PDF created by this
brew/knitr process for Afghanistan looks like. This was a very simple example
illustrating the basic process for combining brew and knitr to create batch

"User-created functions are just like most other R. functions.
8For more information on functions see Hadley Wickham’s page on the topic: http:
//adv-r.had.co.nz/Functions.html.

248 Reproducible Research with R and RStudio Second Edition

FIGURE 12.2: Snippet of an Example PDF Document Created with brew +
knitr

Afghanistan

The mean fertilizer consumption for Afghanistan is 4.3 kilograms per hectare
of arable land.

reports. The process can be used to create much more complex documents
and with other markup languages.

Chapter summary

In this chapter we have learned how to create more complex LaTeX documents
to present our reproducible research. In particular we learned how to take ad-
vantage of parent and child document structures using both basic LaTeX and
knitr tools. These allow us to more easily work with very large presentation
documents. We saw how Pandoc can be combined with these tools so that we
can create our documents using multiple markup languages. We also learned
how to create brew templates that can be used to create multiple documents
presenting information from subsets of our data. In the next chapter we will
learn how to create documents for presenting reproducible research on the
web with Markdown. We will also see how to use rmarkdown to easily create
documents in other formats as well.

13

Presenting on the Web and Other Formats
with R Markdown

LaTeX is the standard markup language for creating academic-quality articles
and books. If we want to present research findings via the internet, our best
option is HTML. HTML syntax can be tedious to write, as we saw in Chapter
9. Luckily the Markdown language was created as a simplified way of writing
HTML documents. As we have seen, Markdown can be fully integrated with
knitr /rmarkdown for creating reproducible research HTML presentation doc-
uments. In addition, the rmarkdown package allows us to write documents in
Markdown and render them to PDF and MS Word.

In this chapter we will learn about Markdown editors and the basic Mark-
down syntax for creating simple reproducible documents, including many of
the things we covered for knitr/LaTeX documents such as headings and text
formatting. Please refer back to previous chapters for syntax used to display
code and code chunks (Chapter 8), tables (Chapter 9), and figures (Chapter
10) with R Markdown documents. In this chapter will also briefly look at some
more advanced features for including math with MathJax, footnotes and bib-
liographies with Pandoc, and customizing styles with CSS. Then we will learn
how to create HTML slideshows. We’ll finish up the chapter by looking at op-
tions for publishing Markdown-created HTML documents, including locally
on your computer, Dropbox, and GitHub Pages.

13.1 The Basics

Markdown was created specifically to make it easy to write HTML (or
XHTML!) using a syntax that is human readable and possibly publishable
without compiling. For example, compare the Markdown table syntax in
Chapter 9 to the HTML syntax for virtually the same table.? That being
said, to make Markdown simple, it does not have as many capabilities as
HTML. To get around this problem you can still use HTML in Markdown,
though note that Markdown syntax cannot be used between HTML element
tags. Pandoc and rmarkdown have extended Markdown so that it can be used
to create reproducible PDF and MS Word documents.

1Extensible HyperText Markup Language
2For more information see John Gruber’s website: http://daringfireball.net/
projects/markdown/.

249

250 Reproducible Research with R and RStudio Second Edition

Note: if you are using rmarkdown to compile a document to PDF or
Word, using raw HTML syntax will often not work as intended, if at all. As a
rule, syntax specific to LaTeX or HTML that is included in an R Markdown
document can only be properly compiled to a PDF or HTML document,
respectively. Similarly, you are only able to include graphics that are of types
supported by the output format. You are not be able to include a JavaScript
plot directly in a PDF.

13.1.1 Getting started with Markdown editors

Like for R LaTeX, RStudio functions as a very good

editor for R Markdown documents and regular non- FIGURE 13.1: R Mark-
knittable Markdown documents as well. To create & down Compile Drop-
new R Markdown document in RStudio, click File Jown Menu

in the menu bar then New — R Markdown. You will

then be able to select what output format you would

like. RStudio has full syntax highlighting for code ? -+ @ KnitHTML -
chunks and can compile .Rmd files into .md, then ren- @7 Knit HTML

der them in .html, for example, with one click of the T Knit PDF

Knit HTML button (=8 X™*™.) As we saw in Chap- ¥ Knit Word

ter 3 (Figure 3.6), when you knit a Markdown doc- View in Pane
ument in RStudio, it will preview the HTML doc- ¥ View in Window

ument for you. You can always view HTML docu-

ments by opening them with your web browser. You

can do this directly from RStudio’s Preview HTML window by clicking the
Open in Browser button (%).

If you click on the downward arrow next to Knit HTML you will see the
drop-down menu in Figure 13.1. This allows you to also compile the document
to PDF or MS Word, regardless of which format you originally chose when
you created the document. As with HTML you will be given a preview of the
PDF or Word document when it is compiled.

In Figure 13.1 you’ll also notice the question mark button. Click this for
a quick guide to the Markdown syntax used in RStudio.

Being plain-text, you can also use any other text editor to modify
Markdown documents, though they will lack the level of integration with
knitr /rmarkdown that RStudio has.

13.1.2 Preamble and document structure

That was kind of a trick subsection title. Unlike LaTeX documents, plain
Markdown documents do not have a preamble. rmarkdown documents can
have a header, basically another name for a preamble, but we will get to that
later. There is also no need to start a body environment or anything like that.
HTML head elements (HTMLs preamble equivalent) are added automatically

Presenting on the Web and Other Formats with R Markdown 251

when you render Markdown documents into HTML. So with Markdown, you
can just start typing.

Here is an example of an R Markdown document that creates the map we
saw in Chapter 10:> We’ll go through all of the code below.

Example R Markdown File

from "Reproducible Research with R and RStudio"
Christopher Gandrud

15 January 2015

**"{r LoadPackages, include=FALSE}
Load required packages
library(devtools)

We can use the

[googleVis] (http://code.google.com/p/google-motion-charts-with-r/)
package to create interactive JavaScript tables, charts, and maps.
Here is an example of how to create a map with *googleVisx*'s
“gvisGeoChart™ function.

Let's first download some data from [GitHub] (https://GitHub.com/) .
See chapters 6 and 7 for details about this data as well as the
[variable description page] (https://GitHub.com/christophergandrud/
Rep-Res-Examples/blob/master/DataGather_Merge/
MainData_VariableDescriptions.md) .

Fertilizer Consumption (kilograms per hectare of arable land) in 2003

Data from [World Bank] (http://data.worldbank.org/indicator/AG.CON.FERT.ZS)
“**{r CreategvisGeoChart, echo=FALSE, message=FALSE, results='asis'}
Create geo map of global fertilizer consumption for 2003

The data is loaded from GitHub (http://bit.ly/VOldsf)

The data gathering process used to create this data set

1s completely reproducible. For more information see:

hitp://bit. ly/YnMKBG

source_url("http://bit.1ly/VNnZxS")

3This code is available on GitHub at: https://GitHub.com/christophergandrud/
Rep-Res-Examples/blob/master/RMarkdownExamples/ExampleKnitrDocument/
ExampleKnitrMarkdown.Rmd

252 Reproducible Research with R and RStudio Second Edition

FIGURE 13.2: Example Rendered R Markdown Document

Example R Markdown File
from “Reproducible Research with R and RStudio”

Christopher Gandrud
15 January 2015

We can use the googleVis package to create interactive JavaScript tables, charts, and maps. Here is an example of how to create a map with
googleVis's gvisGeoChart function.

Let’s first download some data from GitHub. See chapters 6 and 7 for details about this data as well as the variable description page.

Fertilizer Consumption (kilograms per hectare of arable land) in
2003

Data from World Bank

05 T 9.4

When knitted in RStudio and viewed in the Google Chrome web browser, the
final presentation document looks like Figure 13.2.

13.1.3 Headings

Headings in Markdown are extremely simple. Note that Markdown headings
and R Markdown headers are not the same thing. The latter gives instructions
for how to render the document, the former are section titles in the text. To
create a line in the topmost heading style-maybe a title—just place one hash
mark (#) at the beginning of the line. The second-tier heading gets two hashes

Presenting on the Web and Other Formats with R Markdown 253

(##) and so on. You can also put the hash mark(s) at the end of the heading,
but this is not necessary. Here is an example of the three headings:

There are six heading levels in Markdown. You can also create a level-one
heading by following a line of text with equal signs. Level-two headings can
be created by following a line of text with dashes:

A level one heading

A level two heading

13.1.4 Horizontal lines

If you would like to create horizontal lines that run the width of the page in
Markdown, simply place three or more equal signs or dashes separated by text
from above by one blank line:

Create a horizontal line.

13.1.5 Paragraphs and new lines

Just like in LaTeX, new paragraphs are created by putting text on a new line
separated from previous text with a blank line. For example:

This is the first paragraph.

This is the second paragraph.

254 Reproducible Research with R and RStudio Second Edition

You might have noticed that in the headers example we did not need to
separate the header with a blank line.

Separating lines with a blank line places a blank line in the final document.
End a line with two or more white spaces () to create a new line that is not
separated by a blank line.

13.1.6 Italics and bold

To italicize a word in Markdown, simply place it between two asterisks, e.g.
Italicize these words. To make words bold, place them between four
asterisks, two on either side: **Make these words bold*x.

13.1.7 Links

To create hyper-links in Markdown, use the [LINK_TEXT](URL) syntax.*
LINK_TEXT is the text that you would like to show up as the hyper-link text.
When you click on this text it will take you to the linked site specified by
URL. If you want to show only a URL as the text, type it in both the square
brackets and parentheses. This is a little tedious, so in RStudio you can just
type the URL and it will be hyper-linked. In regular Markdown place the URL
between less-than and greater-than signs (<URL>).

13.1.8 Special characters and font customization

Unlike LaTeX rendered with pdfLaTeX, Markdown can include almost any
letters and characters included in your system. The main exceptions are char-
acters used by Markdown syntax (e.g. *, #, \ and so on). You will have to
escape these (see below). Font sizes and typefaces cannot be set directly with
Markdown syntax. You need to set these with HTML or CSS, which I don’t
cover here, though below we will look at how to use a custom CSS file.

13.1.9 Lists

To create itemized lists in Markdown, simply place the items after one dash:

- Item 1
- Another item
- Item 3

To create a numbered list, use numbers and periods rather than dashes.

4You can also include a title attribute after the URL, though this is generally not very
useful. See Section 10.1.2 for a discussion.

Presenting on the Web and Other Formats with R Markdown 255

1. Item 1
2. Another item
3. Item 3

13.1.10 Escape characters

Markdown, like LaTeX and R, uses a backslash (\) as an escape character. For
example, if you want to have an asterisk in the text of your document (rather
than start to italicize your text, e.g. *some italicized text*), type: *. Two
characters—ampersand (&) and the less-than sign (<)-have special meanings in
HTML.? So, to have them printed literally in your text you have to use the
HTML code for the characters. Ampersands are created with &. Less-than
signs are created with &1t.

13.1.11 Math with MathJax

Markdown by itself can’t format mathematical equations. We can create
LaTeX-style equations by adding on the MathJax JavaScript engine. Math-
Jax syntax is the same as LaTeX syntax (see Section 11.1.8), especially when
used from RStudio or when rendered with rmarkdown. Markdown documents
rendered in RStudio automatically link to the MathJax engine online.® If you
want to use another program to render Markdown documents with MathJax
equations, you may need to take extra steps to link to MathJax. For more de-
tails see: http://docs.mathjax.org/en/latest/start.html#mathjax-cdn.

Because backslashes are Markdown escape characters, in many Markdown
editors you will have to use two backslashes to create math environments with
MathJax. For example, in LaTeX and RStudio’s Markdown you can create a
display equation like this:

s 2z —1)?

8§ =
n—1

by typing:”

5 Ampersands declare the beginning of a special HTML character. Less-than signs begin
HTML tags.

6You will not be able to render equations when you are not online.

“In RStudio you can also use dollar signs to delimit MathJax equations as in LaTeX.
See the footnotes in Section 11.1.8 for more information.

256 Reproducible Research with R and RStudio Second Edition

\[
s™{2} = \frac{\sum(x - \bar{x}) 2}n - 1}

\]

But, in other Markdown programs you may have to use:

W
s™{2} = \frac{\sum(x - \bar{x}) 2}n - 1}

I

To make inline equations, use parentheses instead of square brackets as in
LaTeX, e.g. \(s7{2} = \frac{\sum(x - \bar{x})"2}{n - 1} \).

13.2 Further Customizability with
rmarkdown

Markdown is simple and easy to use. But being simple means that it lacks
important functionality for presenting research results, such as footnotes and
bibliographies, and custom formatting. In this section we will learn how to
overcome these limitations with Pandoc and CSS via rmarkdown.

13.2.1 More on rmarkdown Headers

In Chapter 3 (page 48) we first saw an rmarkdown header written in YAML.
Just as a refresher, here is the basic header we looked at:

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "30 November 2015"
output: pdf_document:
toc: true

This header provides instructions for what to do when the document is

Presenting on the Web and Other Formats with R Markdown 257

rendered, gives instructions to render the document as a PDF (via LaTeX),
and inserts a title, author, date, and table of contents at the beginning.

We also have the option to include other formatting options, many of which
we would include in a knitr LaTeX document’s preamble. You include these
at the top level, i.e. without being tabbed. rmarkdown refers to these options
as “metadata”. For example, to change the font size to 11-point we could use:

title: "A Basic PDF Presentation Document"
author: "Christopher Gandrud"
date: "30 November 2015"
output: pdf_document:
toc: true
fontsize: 1ipt

We could double-space the PDF document with a similar top-level en-
try: linestretch: 2.® To find more options for PDF documents, type
?7pdf_document into your R console. Note that these options will only affect
your PDF document, not a rendered HTML file.

Remember from Chapter 3 (page 61) that we can specify rendering in-
structions for multiple output formats in the same header. Here is a longer
header, building on what we just saw. We’ll go through it in detail:

title: "An Example rmarkdown Article"
author: "Christopher Gandrud"
date: "15 January 2015"
output:
pdf_document:
latex_engine: xelatex
number_sections: yes
toc: yes
html_document:
toc: no
theme: "flatly"
linestretch: 2
fontsize: 11pt

81 would be for single space and 1.5 would be for one and a half spacing.

258 Reproducible Research with R and RStudio Second Edition
TABLE 13.1: A Selection of Pandoc In-text Citations

Markup Result
[@Donoho2009] (Donoho 2009)
[-@Donoho2009] (2009)
[see @Donoho2009] (see Donoho 2009)
[see @Donoho2009, 10-11] (see Donoho 2009, 10-11)
[@Donoho2009; ©Box1973] (Donoho 2009; Box 1973)
@onoho2009 [10-11] Donoho (2009, 10-11)

bibliography:

- Main.bib

- Packages.bib

Ok, let’s go through this in detail. We have already seen the title,
author, date, linestretch, and fontsize options. Notice that we used
latex_engine to set the LaTeX engine to XeLaTeX, which is useful for
documents that include non-standard English characters. We also specified
with number_sections that the PDF document should have numbered sec-
tion headings.

For the HTML version of the document we do not want a table of contents
as we set toc: no. We specified a CSS theme called Flatly for our HTML
document using theme: "flatly". As of this writing, rmarkdown has a built-
in ability to use a range of themes from Bootswatch (http://bootswatch.
com/). Alternatively, you can link to a custom CSS file with the css option.
Use html_document to see other options. Notice that we can use no and yes
instead of false and true, respectively.

We linked to two BibTeX files with the bibliography option. Using Pan-
doc syntax, the references will apply to both the PDF and HTML documents.

If you want to also enable the creation of a Microsoft Word document,
include output: word_document in the header.

Presenting on the Web and Other Formats with R Markdown 259

Bibliographies with Pandoc

Pandoc via rmarkdown allows us to insert citations from normal BibTeX files
(see Chapter 11) specified in the header with bibliography. The main dif-
ference is that Pandoc has a different syntax from LaTeX for making in-text
citations. Basic Pandoc citations begin with @ followed by the BibTeX citation
key. Square brackets ([]) create parentheses around the citation. Here is an
example:

This is a citation [@Donoho2009].

Pandoc uses natbib by default, so the citation [@Donoho2009] will appear
as (Donoho et al., 2009). To add text before and after the citation inside
of the parentheses, use something like this: [see @Donoho2009, 10]; which
creates: (see Donoho et al. 2009, 10). If you do not want the parentheses
around the entire citation (only the year) then omit the square brackets. To
include only the year and not the authors’ surnames, add a minus sign, e.g.
[-@Donoho2009]. See Table 13.1 for more options.

Full bibliographic information for each item that is cited in the text will
be produced at the end of the output document. I suggest placing a heading
like # References at the very end of your document so that the bibliography
will be differentiated from the document’s text.

Footnotes with Pandoc

You can also include footnotes in documents rendered with rmarkdown by
using Pandoc’s footnote syntax. In the text where you would like a footnote
to be located use: ["NOTE_KEY]. Then at the end of your document, place
["NOTE_KEY] : The footnote text.” NOTE_KEYs generally follow the same
rules as BibTeX citation keys, so no spaces. The footnotes will be numbered
sequentially when rendered.

To sum up, here is an example of document that can be rendered in HTML
or PDF using rmarkdown. It includes footnotes and a bibliography.

title: "Minimal rmarkdown Example"
output:
pdf_document:

9You can actually put this almost anywhere and it will be placed and numbered correctly
in the output document, but I find it easier to organize the footnotes when they are placed
at the end.

260 Reproducible Research with R and RStudio Second Edition

toc: true

html_document:

toc: false
bibliography: Main.bib

This is some text.[FirstNote]
This is a *knitr* code chunk:

T}
plot(cars$speed, cars$dist)

This is a citation [see ©@Donoho2009, 10].

["FirstNote] : This is a footnote.

We have only covered a small proportion of Pandoc’s capabilities that you
can take advantage of with rmarkdown. For full range of Pandoc’s abilities
see: http://johnmacfarlane.net/pandoc/README.html.

13.2.2 CSS style files and Markdown

You can customize the formatting of HTML documents created with Mark-
down files using custom CSS style sheets. CSS files allow you to specify the
way a rendered Markdown file looks in a web browser including fonts, margins,
background color, and so on. We don’t have space to cover CSS syntax here.
There are numerous online resources for learning CSS. One of the best ways
may be to just copy a CSS style sheet into a new file and play around with it
to see how things change. A really good resource for this is Google Chrome’s
Developer Tools. The Developer Tools allows you to edit your webpages, in-
cluding their CSS, and see a live preview. It is a really nice way to experiment
with CSS (and HTML and JavaScript).!® There are also numerous pre-made
style sheets available online.!!

10For more information on how to access and use Developer Tools in Chrome see: https:
//developers.google.com/chrome-developer-tools/.

1 0ne small note: when you create a new style sheet or copy an old one, make sure the
final line is blank. Otherwise you may get an “incomplete final line” error when you render
the document.

Presenting on the Web and Other Formats with R Markdown 261

Rendering R Markdown files to HTML using custom CSS

The simplest way to use a custom CSS style sheet is to include the file path
to the CSS file in an rmarkdown header. As mentioned earlier, rmarkdown
has a number of built-in CSS file options that you can access with style. If
you want to use another custom CSS file, use the css option. If our custom
CSS file is called Markdown.css in the same directory as the R Markdown
document, then a basic header would be:

output:
html_document:
css: Markdown.css

If you are using the knitr package to render an R Markdown document
to HTML you can also include a custom CSS file. First use knit to knit the
document to a plain Markdown file. Then use the markdownToHTML function
from the markdown package [Allaire et al., 2015b] to render the plain Mark-
down document in HTML, including the stylesheet argument with the path
to the CSS file.

13.3 Slideshows with Markdown, rmarkdown,
and HTML

Because R Markdown documents can be compiled into HTML files it is pos-
sible to use them to create HTML5 slideshows.'? There are a number of ad-
vantages to creating HTML presentations with Markdown:

e You can use the relatively simple Markdown syntax.
o HTML presentations are a nice native way to show content on the web.

o HTML presentations can incorporate virtually any content that can be in-
cluded in a webpage. This includes interactive content, like motion charts
created by googleVis (see Chapter 10).

Let’s look at how to create HTML slideshows from Markdown documents
using (a) the rmarkdown package and (b) RStudio’s built-in slideshow files,
called R Presentations. You can also use rmarkdown to create beamer presen-
tations.

12The slideshows created by the tools in this section use features introduced in the 5th
version of HTML, i.e. HTMLS5. In this section I often refer to HTML5 as just HTML for
simplicity.

262 Reproducible Research with R and RStudio Second Edition

HTMLS5 frameworks

Before getting into the details of how to use rmarkdown for presentations and
R Presentations, let’s briefly look more into what an HTML5 slideshow is and
the frameworks that make them possible. HTML5 slideshows rely on a num-
ber of web technologies in addition to HTML5, including CSS, and JavaScript
to create a website that behaves like a LaTeX beamer or PowerPoint pre-
sentation. They run in your web browser and you may need to be connected
to the internet for them to work properly as key components are often lo-
cated remotely. Most browsers have a Full Screen mode you can use to view
presentations.

There are a number of different HTML5 slideshow frameworks that let
you create and style your slideshows. In all of the frameworks you view the
slideshow in your web browser and advance through slides with the forward
arrow key on your keyboard. You can go back with the back arrow. Despite
these similarities, the frameworks have different looks and capabilities.

13.3.1 HTML Slideshows with rmarkdown

It is very easy to create an HTML presentation using rmarkdown and the 10
Slides!'?® or Slidy!'* HTML5 frameworks. The syntax for 10 Slides and Slidy
presentations with rmarkdown presentations is almost exactly the same as the
syntax we have seen throughout this chapter. There are two main differences
from the syntax we have seen so far. First, ioslides_presentation for 10
Slides or slidy_presentation for Slidy presentations is the output type to
set in the header. Second, two hashes (##) set a frame’s header.!® For example,

title: "Simple rmarkdown Presentation Example"
author: "Christopher Gandrud"
date: "26 December 2015"
output:
ioslides_presentation:
incremental: true

The code to create the following figure is available online.

Bhttps://code.google.com/p/io-2012-slides/
Mhttp://www.w3.org/Talks/Tools/Slidy2/#(1)
15You can create sections with one hash.

Presenting on the Web and Other Formats with R Markdown 263

FIGURE 13.3: rmarkdown /IO Slides Example Title Slide

/git_repositories/Rep-Res-| Example._| _package_{ i _ html

4 simple rmarkdown Presentation Example (1/3) = | " Open in Browser Publish

Simple rmarkdown
Presentation Example

Christopher Gandrud
26 December 2015

This code creates a slide show that begins with the slide in Figure 13.3. Bullet
points will be brought in incrementally because we used incremental: true
under output: ioslides_presentation. Bullets are created using Mark-
down list syntax.

Use three dashes (-—-) to delineate a new slide without a header. You can
style the presentation further using the css option in the header to link to a
custom CSS file.

You can create a new 10 Slides or Slidy rmarkdown presentation in RStu-
dio by selecting File — R Markdown. .. then Presentation in the menu on
the left of the window (shown in Figure 13.4). Finally, click HTML (ioslides)
or HTML (Slidy).

13.3.2 LaTeX Beamer Slideshows with rmarkdown

As we saw in Chapter 11, creating a presentation with LaTeX beamer involves
rather convoluted syntax. Luckily, we can use rmarkdown to create beamer
presentations using much cleaner Markdown syntax.

An rmarkdown beamer presentation uses the same syntax that we just
saw with HTML presentations. The main difference is in the header where we
use output: beamer_presentation. You create a new R Markdown beamer
document in RStudio in a similar way as IO Slides or Slidy. The only difference

264 Reproducible Research with R and RStudio Second Edition

FIGURE 13.4: Create New rmarkdown Presentation in RStudio

New R Markdown

[Document Title: |Untit|ed |
CJ Presentation Author: | |
&) shiny Default Output Format:

[=| From Template © HTML (ioslides)

HTML presentation viewable with any browser (you can
also print ioslides to PDF with Chrome).

HTML (Slidy)

HTML presentation viewable with any browser (you can
also print Slidy to PDF with Chrome).

PDF (Beamer)

PDF output requires TeX (MiKTeX on Windows, MacTeX
2013+ on OS X, TeX Live 2013+ on Linux).

| OK Cancel

is that we select PDF (Beamer) in the window shown in Figure 13.4. As before,
frame titles are delineated with two hashes (##). You can mark sections in
much the same way with one hash. In the header you can switch the beamer
theme, font theme, and color theme with theme, colortheme, and fonttheme,
respectively. For example, to create the slide show that begins with the slide
in Figure 13.5:

output:
beamer_presentation:
incremental: true
theme: "Bergen"
colortheme: '"crane"
fonttheme: "structurebold"

Note that themes are placed in quotation marks. You can also include a cus-
tom template with the template option followed by the path to the custom
template file.

Presenting on the Web and Other Formats with R Markdown 265

FIGURE 13.5: rmarkdown/Beamer Example Title Slide

(X X] RStudio: View PDF
¥ Page: 1 of3 — 4 Automatic Zoom*

Simple rmarkdown Presentation
Example

Christopher Gandrud

26 December 2015

266 Reproducible Research with R and RStudio Second Edition

13.3.3 Slideshows with Markdown and RStudio’s R Presen-
tations

Another easy, but less customizable way to create HTML slideshows is with
RStudio’s R Presentation documents. To get started, open RStudio and click
File — New — R Presentation. RStudio will then ask you to give the
presentation a name and save it in a particular file. The reason RStudio does
this is because an R Presentation is not just one file. Instead it includes:

e A .Rpres file, which is very similar to a knitr Markdown .Rmd file.
¢ A .md Markdown file created from the .Rpres file.

e knitr cache and figure folders, also created from the .Rpres file.

Editing and compiling the presentation

You change the presentation’s content by editing the .Rpres file using the
normal knitr Markdown syntax we’ve covered. The only difference is how you
create new slides. Luckily, the syntax for this is very simple. Just type the
slide’s title then at least three equal signs (===). For example,

This is an Example .Rpres Slide Title

The very first slide is automatically the title slide and will be formatted dif-
ferently from the rest.'® Here is an example of a complete .Rpres file:

Example R Presentation

Access the Code

The code to create the following figure is available online.

16 As of this writing it is a blue slide with white letters.

Presenting on the Web and Other Formats with R Markdown 267

To access it we type:

“*"{r, eval=FALSE}

devtools::source_url("http://bit.ly/VRKphr")

Caterpillar Plot

"> {r, echo=FALSE, message=FALSE}

devtools: :source_url("http://bit.1ly/VRKphr")

Fertilizer Consumption Map (2003)

{r CreategvisGeoMap, echo=FALSE, message=FALSE, results='asis'}

devtools::source_url("http://bit.ly/VNnZxS")

This example includes four slides and three code chunks. The last code chunk
uses the googleVis package to create the global map of fertilizer consumption
we saw earlier in Figure 10.6. Because the slideshow we are creating is in
HTML, the map will be fully dynamic. Note that like before you will not be
able to see the map in the RStudio preview, only in a web browser.

To compile the slideshow, either click the Preview button (#ree) or save
the . Rpres document. When you do this, you can view your updated slideshow
in the Presentation pane. For example, see Figure 13.6. You can navigate
through the slideshow using the arrow buttons at the bottom right of the
Presentation pane. If you click the magnifying glass icon (#) at the top of
the Presentation pane you will get a much larger view of the slideshow. You
can also view the slideshow in your web browser by clicking on the More icon
(@wre-) then View in Browser.

Publishing slideshows

You can of course, view your slideshows locally. To share your presentation
with others, you probably want to either publish the presentation to a stan-

268 Reproducible Research with R and RStudio Second Edition
FIGURE 13.6: RStudio R Presentation Pane

©) Untitled.Rnw » @] testRmd » @) Untitled1* » @)BookMake.R » 5] ExampleRPresentation.Rpres » ("] Environment History Presentation -0
Q7+) Preview ~#Run | &% Chunks~ | 4 Example R Presentation (1/4) ~ ./ Gk More- (&)
Example R Presentation

- ## Christopher Gandrud

Example R Presentation

Access the Code Christopher Gandrud

- # 1 July 2015

11 The code to create the following figure is available online. 1 July 2015
13 To access it we type:

15+ > {r, eval=FALSE}
16 # Access and run the code to create a caterpillar plot

18 devtools: :source_url("http://bit.ly/VRKphr")
21 Caterpillar Plot

2 —

(35 Example R Presentation * R Presentation *

Files Plots Packages Help = Viewer ==

Console /git_repositories/Rep-Res-Book /Source/ = =0}

dalone HTML file and host it, for example, on a Dropbox Public folder or
publish it directly to RPubs. For R Presentations, create a standalone HTML
file by simply clicking the More button in the Presentation pane, then Save as
Webpage. ... Under the More button you can also choose the option Publish
to RPubs....

13.4 Publishing HTML Documents Created
by R Markdown

In Chapter 3 (Section 3.3.8) we saw how to publish other R Markdown docu-
ments compiled with RStudio to RPubs. The knitr function knit2wp can be
used to post a knitted Markdown file to WordPress'” sites, which are often
used for blogging. In this section we will look at two other ways to publish R
Markdown documents using Dropbox and GitHub.

13.4.1 Standalone HTML files

Of course, you can simply open the HTML file rendered from any R Markdown
document in your web browser. If the HTML file contains the full information
for the page as they generally do when created by rmarkdown, e.g. the file
does not depend on any auxiliary files, you can simply share this file via email
or whatnot and anyone with a web browser can open it. We can Of course,
also send auxiliary files if need be, but this can get unwieldy.

Thttp://wordpress.com

Presenting on the Web and Other Formats with R Markdown 269

13.4.2 Hosting webpages with Dropbox

Probably one of the easiest ways to host an HTML file created with R Mark-
down is on your Dropbox Public folder.'® Any HTML file Slideshows in the
Public folder will be rendered and widely accessible simply by entering the
public link into a web browser.

13.4.3 GitHub Pages

GitHub also offers a free hosting service for webpages. These can be much
more complex than a single HTML file. The simplest way to create one of
these pages is to create a repository with a file called README.Rmd. You
can knit this file and then create your GitHub Page with it. To do this,
go to the Settings — GitHub Pages on your repository’s main GitHub web-
site. Then click Automatic Page Generator. This places the contents of your
README.md file in the page and provides you with formatting options. Click
Publish and you will have a new website.

Clicking Publish creates a new orphan branch!'® called gh-pages. When
these branches are pushed to GitHub it will create a website based on a file
called index.html that you include in the branch. This will be the website’s
main page.

If you want to create more customized and larger websites with GitHub
Pages, you can manually create a GitHub Pages orphan branch and push it to
GitHub. This is essentially what slidify did for us with its publish command.
Imagine we have our working directory set as a repository containing an R
Markdown file that we have rendered into an HTML file called indez.html.
Let’s create a new orphan branch:

git checkout --orphan gh-pages

Now add the files, commit the changes and push it to GitHub. Push it to the

gh-pages branch like this:

git add .

18See Section 5.2.2 for instructions on how to enable this folder if you created your
Dropbox account after 4 October 2012.

19An orphan branch is a branch with a different root from other repository branches.
Another way of thinking about this is that they have their own history.

270 Reproducible Research with R and RStudio Second Edition

git commit -am "First gh-pages commit"

git push origin gh-pages

A new webpage will be created at: USERNAME.GitHub.io/REPO_NAME
You can also add custom domain names. For details see: https://help.
GitHub.com/articles/setting-up-a-custom-domain-with-GitHub-pages/.

13.4.4 Further information on R Markdown

We have covered many of the core capabilities of rmarkdown for creating re-
producible research documents. Please see RStudio’s R Markdown documen-
tation (http://rmarkdown.rstudio.com/) for even more information. An-
other tool to look into for interactive results presentation is the shiny package
[Chang et al., 2015]. It gives R the capability to create interactive web ap-
plications, not just the static websites that we have covered in this chapter.
This package is well integrated with RStudio. For more information please
see: http://shiny.rstudio.com/.

Chapter summary

In this chapter we learned a number of tools for dynamically presenting our
reproducible research on the web as well as how to create PDFs with the
simple R Markdown syntax. Though LaTeX and PDFs will likely remain the
main tools for presenting research in published journals and books for some
time to come, choosing to also make your research available in online native
formats can make it more accessible to general readers. It also allows you to
take advantage of interactive tools for presenting your research. rmarkdown
also makes it easy to create documents in a variety of formats using the simple
R Markdown format. For relatively simple documents this can be a very useful
tool.

14

Conclusion

Well, we have completed our journey. The only thing left to do now is
practice, practice, practice. [Shotts Jr., 2012, 432]

In this book we learned a workflow for highly reproducible computational
research and many of the tools needed to actually do it. Hopefully, if you
haven’t already, you will begin using and benefiting from these tools in your
own work. Though we’ve covered enough material in this book to get you well
on your way, there is still a lot more to learn. With most things computational
(possibly most things in general), one of the best ways to continue learning
is to practice and try new things. Inevitably you will hit walls, but there are
almost always solutions that can be found with curiosity and patience. The
R and reproducible research community is extremely helpful when it comes
to finding and sharing solutions. I highly recommend getting involved in and
eventually contributing to this community to get the most out of reproducible
research.!

Before ending the book, I want to briefly address five issues we have not
covered so far that are important for reproducible research: citing reproducible
research, licensing this research, sharing your code with R packages, whether
or not to make your research files public before publishing the results, and
whether or not it is possible to completely future-proof your research.

14.1 Citing Reproducible Research

There are a number of well-established methods for citing presentation doc-
uments, especially published articles and books. However, as we discussed in
the beginning, these documents are just the advertising for research findings
rather than the actual research [Buckheit and Donoho, 1995, Donoho, 2010,
385]. If other researchers are going to use the data and source code used
to create the findings in their own work, they need a way of actually citing

1A good point of entry into the R reproducible research community is R-bloggers
(http://www.r-bloggers.com/). The site aggregates many different blogs on R-related
topics from both advanced and relatively new R users. I have found that beyond just
consuming other peoples’ insights, contributing to R-bloggers-having to clearly write
down my steps—has sharpened my understanding of the reproducible research process
and enabled me to get great feedback. Other really useful resources are the R Stack
Overflow (http://stackoverflow.com/questions/tagged/r) and Cross Validated (http:
//stats.stackexchange.com/questions/tagged/r) sites.

271

272 Reproducible Research with R and RStudio Second Edition

the particular data and source code they used. Citing data and source code
presents unique problems. Data and source code can change and be updated
over time in a way that published articles and books generally are not. As
such we have a much less developed, or at least less commonly used set of
standards for citing these types of materials.

One possibility is a standard for citing quantitative data sets laid out by
Altman and King [2007] [see also King, 2007]. They argue that quantitative
data set citations should:

o allow a reader to quickly understand the nature of the cited data set,
o unambiguously identify a particular version of the data set, and

o enable reliable location, retrieval, and verification of the data set.

The first issue can be solved by having a citation that includes the author, the
date the data set was made public, and its title. However, these things do not
unambiguously identify the data set as it may be updated or changed and it
does not enable its location and retrieval. To solve this problem, Altman and
King suggest that these citations also include:

 a unique global identifier (UGI),
¢ a universal numeric fingerprint (UNF), and

e a bridge service.

A UGI uniquely identifies the data set. Examples include Document Ob-
ject Identifiers (DOI) and the Handel System.? UGIs by themselves do not
uniquely identify a particular version of a data set. This is where UNFs come
in. They uniquely identify each version of a data set. Finally, a bridge service
links the UGI and UNF to an actual document, usually posted online, so that
it can be retrieved.

There are many ways to register DOIs and Handel UGIs. Most of these
also include means for creating UNFs and a bridge service. Examples of
services that store your work and assign it DOIs are figshare? and Zen-
0do.* Zenodo can be integrated with GitHub so that it will store and cre-
ate citations for a specific commit of a GitHub repository whenever you cre-
ate a tag. For more information about integrating GitHub and Zenodo see:
https://guides.GitHub.com/activities/citable-code/. Please see Alt-
man and King [2007] for details of other services.®

Though Altman and King are interested in data sets, their system could

2See: http://www.handle.net/.

3http://figshare.com/

4nttps://zenodo.org/

5The Dataverse Project (http://thedata.org/) offers a free service to host files that also
uses the Handel System to assign UGIs, UNFs, and provides a bridge service. See Gandrud
[2013b] for a comparison of Dataverse with GitHub and Dropbox for data storage.

Conclusion 273

easily be applied to source code as well. UGIs could identify a source code file
or collection of files. The UNF could identify a particular version and a bridge
service would create a link to the actual files.

14.2 Licensing Your Reproducible Research

In the United States and many other countries, research, including computer
code made available via the internet, is automatically given copyright pro-
tection. However, copyright protection works against the scientific goals of
reproducible research, because work derived from the research falls under the
original copyright protections [Stodden, 2009a, 36]. To solve this problem,
some authors have suggested placing code under an open source software li-
cense like the GNU General Public License (GPL) [Vandewalle et al., 2007].
Stodden [2009a] argues that this type of license is not really adequate for mak-
ing available the data, code, and other material needed to reproduce research
findings in a way that enables scientific validation and knowledge growth. I
don’t want to explore the intricacies of these issues here. Nonetheless, they
are important for computational researchers to think about, especially if their
data and source code is publicly available. Two good places to go for more
information are Stodden [2009a] and Creative Commons [2012].

14.3 Sharing Your Code in Packages

Developing R functions and putting them into packages is a good way to en-
able cumulative knowledge development. Many researchers spend a consider-
able amount of time writing code to solve problems that no one has addressed
yet, or haven’t addressed in a way that they believe is adequate. It is very
useful if they make this code publicly accessible so that others can perhaps
adopt and use it in their own work without having to duplicate the effort
used to create the original functions. Abstracting your code into functions so
that they can be applied to many problems and distributing them in easily
installed packages makes it much easier for other researchers to adopt and
use your code to help solve their research problems. The active community of
researcher /package developers is one of the main reasons that R has become
such a widely used and useful statistical language.

Many of the tools we have covered in this book provide a good basis to
start making and distributing functions. We have discussed many of the R
commands and concepts that are important for creating functions. We have
also looked at Git and GitHub, which are very helpful for developing and
distributing packages. Learning about Hadley Wickham’s devtools package is
probably the best next step for you to take to be able to develop and distribute
functions in packages. He has an excellent introduction to devtools and R
package development in general at http://adv-r.had.co.nz/Philosophy.
html#introduction-to-devtools.

274 Reproducible Research with R and RStudio Second Edition

RStudio Projects have excellent devtools integration and are certainly
worth using. To begin creating a new package in RStudio, start a new project,
preferably with Git version control (see Section 5.4.1). In the New Project
window select Package. Now you will have a new Project with all of the files
and directories you need to get started making packages that will hopefully
be directly useful for the computational research community.

14.4 Project Development: Public or Private?

Hopefully T have made a convincing case in this book that research results,
especially in academia, should almost always be highly reproducible. The files
used to create the results need to be publicly available for the research to be
really reproducible.® During the development of a research project, however,
should files be public or private?

On the one hand, openness encourages transparency and feedback. Other
researchers may alert you to mistakes before a result is published. On the
other hand, there are worries that you may be “scooped”. Another researcher
might see your files, take your idea, and publish it before you have a chance to.
In general, this worry may be a bit overblown. Especially if you use a version
control system that clearly dates all of your file versions, it would be very easy
to make the case that someone has stolen your work. Hopefully this possibility
would discourage any malfeasance. That being said, unlike the clear need to
make research files available after publication, during research development
there are good reasons for both making files public and keeping them private.

Researchers should probably make this decision on a case-by-case basis.
In general, I choose to make my research repositories public to increase trans-
parency and encourage feedback. The community of researchers in my field is
relatively small and close knit. It would be hard for someone to take my work
and pass it off as their own. This is especially true if many people already
know that they are my ideas, because I have made by research files publicly
available. However, during the development of this book, which has a more
general appeal, I kept the repository private to avoid being “scooped”. Re-
gardless, cloud storage systems like GitHub make it easy to choose whether
or not to make your files public or private. You can easily keep a repository
private while you create a piece of research and then make it public once the
results are published.

6There are obvious exceptions, such as when a study’s participants’ identities need to
remain confidential.

Conclusion 275

14.5 Is it Possible to Completely
Future-Proof Your Research?

In this book we’ve looked at a number of ways to help future-proof your
research so that future researchers (and you) are able to actually reproduce
it. These included storing your research in text files, clearly commenting on
your code, and recording information about the software environment you
used by, for example, recording your session info. Are these steps enough to
completely ensure that your research will always be reproducible? The simple
answer is probably no. Software changes, but it is difficult to foresee what these
changes will be. Nonetheless, beyond what we have discussed so far there are
other steps we can take to make our reproducible research as future-proof as
possible.

One of the main obstacles to completely future-proofing your research is
that no (or at least very few) pieces of software are complete. R packages
are updated. R is updated. Your operating system is updated. These and
other software programs discussed in this book may not only be updated,
but also discontinued. Changes to the software you used to find your results
may change the results someone reproducing your research gets. This problem
becomes larger as you use more pieces of software in your research

That being said, many of the software tools we have learned about in
this book have future-proofing at their heart. TeX, the typesetting system
that underlies LaTeX, is probably the best example. TeX was created in 1978
and has since been maintained with future-proofing in mind [Knuth, 1990].
Though changes and new versions continue to be made, we are still able to
use TeX to recreate documents in their original intended form even if they
were written over thirty years ago. We also saw that, though R and especially
R packages change rapidly, the Comprehensive R Archive Network stores and
makes accessible old versions (as the name suggests). Old versions can be
downloaded by anyone wishing to reproduce a piece of research, provided the
original researcher has recorded which versions they used. This is very easy
using repmis’s LoadandCite command. This command lets you specify par-
ticular package versions to install and load from the CRAN package archive.”
Another approach is to use the packrat R package [Ushey et al., 2015] for man-
aging the packages your project depends on. Some of the other technologies
discussed in this book may be less reliable over time, so some caution should
be taken if you intend to use them to create fully reproducible research.

In addition to documenting what software you used and using software
that archives old versions, some have suggested another step to future-proof
reproducible research: encapsulate it in a virtual machine that is available on
a cloud storage system. See in particular Howe [2012]. A virtual reproducible
research machine would store a “snapshot [of] a researcher’s entire working
environment, including data, software, dependencies, notes, logs, scripts, and

Do this by entering specific package version numbers in the versions argument.

276 Reproducible Research with R and RStudio Second Edition

more”. If the virtual machine is stored on a cloud server, then anyone wanting
to reproduce the research could access the full computing environment used
to create a piece of research [Howe, 2012, 36]. As long as others could run the
virtual machine and access the cloud storage system, you would not have to
worry about changing software, because the exact versions of the software you
used would be available in one place.

We don’t have space to cover the specifics of how to create a virtual ma-
chine in this book. However, using a virtual machine is a tool that can be
added to the workflow discussed in this book, rather than being a replace-
ment for it. Carefully documenting your steps, clearly organizing your files,
and dynamically tying together your data gathering, analysis, and presenta-
tion files helps you and others understand how you created a result after a
research project’s results have been published. Being able to understand your
research will give it higher research impact as others can more easily build on
it. The steps covered in this book will still encourage you to have better work
habits from the beginning of your research projects even if you will be using
a virtual machine. The tools and workflow will also continue to facilitate col-
laboration and make it easier to dynamically update your research documents
when you make changes.

Now, get started with reproducible research!

Bibliography

JJ Allaire, Joe Cheng, Yihui Xie, Jonathan McPherson, Winston Chang,
Jeff Allen, Hadley Wickham, and Rob Hyndman. rmarkdown: Dynamic
Documents for R, 2015a. URL http://CRAN.R-project.org/package=
rmarkdown. R package version 0.7.

JJ Allaire, Jeffrey Horner, Vicent Marti, and Natacha Porte. markdown:
"Markdown’ Rendering for R, 2015b. URL http://CRAN.R-project.org/
package=markdown. R package version 0.7.7.

Micah Altman and Gary King. A proposed standard for the scholarly citation
of quantitative data. D-Lib Magazine, 13(3/4), 2007.

Vincent Arel-Bundock. WDI: World Development Indicators (World Bank),
2013. URL http://CRAN.R-project.org/package=WDI. R package version
2.4.

Vincent Arel-Bundock. countrycode: Convert Country Names and Country
Codes, 2014. URL http://CRAN.R-project.org/package=countrycode.
R package version 0.18.

Rasmus Baath. The state of naming conventions in R. The R Journal, 4(2):
74-75, 2012.

Stefan Milton Bache and Hadley Wickham. magrittr: A Forward-Pipe Oper-
ator for R, 2014. URL http://CRAN.R-project.org/package=magrittr.
R package version 1.5.

Fr. Rogeri Bacon. Opera quaedam hactenus inedita. Vol. I. containing I.—-
Opus tertium. II.—Opus minus. III.—Compendium philosophiae. Google
eBook, 1267/1859. Retrieved from http://books.google.com/books?id=
wMUKAAAAYAAJ.

Richard Ball and Norm Medeiros. Teaching integrity in empirical research:
A protcol for documenting data management and analysis. The Journal of
Economic Education, 43(2):182-189, 2011.

Christopher D Barr. Establishing a culture of reproducibility and openness
in medical research with an emphasis on the training years. Chance, 25(3):
8-10, 2012.

277

278 Bibliography

Carl Boettiger and Duncan Temple Lang. Treebase: An R package for dis-
covery, access and manipulation of online phylogenies. Methods in Ecology
and Evolution, 3(6):1060-1066, 2012.

Jake Bowers. Six steps to a better relationship with your future self. The
Political Methodologist, 18(2):2-8, 2011.

George EP Box and David R Cox. An analysis of transformations. Journal of
the Royal Statistical Society. Series B (Methodological), 26:211-252, 1964.

S.E. Braude. ESP and Psychokinesis. A Philosophical Examination. Temple
University Press, Philadelphia, PA, 1979.

Jonathan B. Buckheit and David L. Donoho. Wavelab and reproducible
research. In A. Antoniadis, editor, Wavelets and Statistics, pages 55-81.
Springer, New York, 1995.

John B. Burbidge and Leslie Robb. Alternative transformations to handle ex-
treme values of the dependent variable. Journal of the American Statistical
Association, 83(401):123-127, 1988.

David Carslaw and Karl Ropkins. openair: Tools for the Analysis of Air Pol-
lution Data, 2015. URL http://CRAN.R-project.org/package=openair.
R package version 1.5.

Winston Chang. R Graphics Cookbook: Practical Recipes for Visualizing Data.
O’Reilly Media, Inc., Sebastopol, CA, 2012.

Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie, and Jonathan McPher-
son. shiny: Web Application Framework for R, 2015. URL http://CRAN.
R-project.org/package=shiny. R package version 0.12.1.

Alex Couture-Beil. rjson: JSON for R, 2014. URL http://CRAN.R-project.
org/package=rjson. R package version 0.2.15.

Micheal J. Crawley. Statistics: An Introduction Using R. John Wiley and Sons
Ltd., Chichester, 2005.

Micheal J. Crawley. The R Book. John Wiley and Sons Ltd., Chichester, 2nd
edition, 2013.

Creative Commons. Data. http://wiki.creativecommons.org/Data, 2012.

David L Donoho. How to be a highly cited author in mathematical sciences.
in-cites, 2002. http://www.in-cites.com/scientists/DrDavidDonoho.
html.

David L Donoho. An invitation to reproducible computational research. Bio-
statistics, 11(3):385-388, 2010.

Bibliography 279

David L Donoho, Arian Maleki, Morteza Shahram, Inam Ur Rahman, and
Victoria Stodden. Reproducible research in computational harmonic anal-
ysis. Computing in Science & Engineering, 11(1):8-18, 2009.

M Dowle, T Short, S Lianoglou, A Srinivasan with contributions from
R Saporta, and E Antonyan. data.table: Extension of data.frame, 2014.
URL http://CRAN.R-project.org/package=data.table. R package ver-
sion 1.9.4.

A S C Ehrenberg. Rudiments of numeracy. Journal of the Royal Statistical
Society. Series A General, 140(3):277-297, 1977.

Sergey Fomel and Jon F Claerbout. Reproducible Research. Computing in
Science € Engineering, 11(1):5-7, 2009.

Mitch Frazier. Bash parameter expansion. The Linux Jour-
nal, 2008. Available at: http://www.linuxjournal.com/content/
bash-parameter-expansion.

Christopher Gandrud. The diffusion of financial supervisory governance ideas.
Review of International Political Economy, 20(4):881-916, 2013a.

Christopher Gandrud. Github: A tool for social data set development and
verification in the cloud. The Political Methodologist, 20(2):2-7, 2013b.

Christopher Gandrud. repmis: Miscellaneous Tools for Reproducible Research,
2015. URL http://CRAN.R-project.org/package=repmis. R package
version 0.4.4.

Christopher Gandrud and Cassandra Grafstrom. Inflated expectations: How
government partisanship shapes bureaucrats’ inflation forecasts. Political
Science Research and Methods, 2015. Available at: http://dx.doi.org/
10.1017/psrm.2014.34.

Andrew Gelman. Tables as graphs: The Ramanujan principle. Significance, 8
(4):183, 2011.

Jeff Gentry. twitteR: R Based Twitter Client, 2015. URL http://CRAN.
R-project.org/package=twitteR. R package version 1.1.8.

Markus Gesmann and Diego de Castillo. googleVis: R Interface to Google
Charts, 2015. URL http://CRAN.R-project.org/package=googleVis. R
package version 0.5.9.

Ben Goodrich and Ying Lu. normal.bayes: Bayesian normal linear regression.
Zelig FEveryone’s Statistical Software, 2007. Available at: http://gking.
harvard.edu/zelig.

Thomas Herndon, Michael Ash, and Robert Pollin. Does high public debt con-
sistently stifle economic growth? a critique of Reinhart and Rogoff. Cam-
bridge Journal of Economics, 38(2):257-279, 2014.

280 Bibliography

Marek Hlavac. stargazer: LaTeX/HTML code and ASCII text for well-
formatted regression and summary statistics tables, 2014. URL http:
//CRAN.R-project.org/package=stargazer. R package version 5.1.

Jeffrey Horner. brew: Templating Framework for Report Generation, 2011.
URL http://CRAN.R-project.org/package=brew. R package version 1.0-
6.

Bill Howe. Virtual appliances, cloud computing, and reproducible research.
Computing in Science & Engineering, 14(4):36—41, 2012.

Rob J. Hyndman. Transforming data with zeros, 2010. Available at: http://
robjhyndman. com/hyndsight/transformations/. Accessed March 2015.

Clint D Kelly. Replicating empirical research in behavioral ecology: How and
why it should be done but rarely ever is. The Quarterly Review of Biology,
81(3):221-236, 2006.

Gary King. Replication, replication. PS: Political Science and Politics, 28(3):
444-452, 1995.

Gary King. An introduction to the dataverse network as an infrastructure for
data sharing. Sociological Methods € Research, 36(2):173-199, 2007.

Gary. King, Robert Keohane, and S. Verba. Designing Social Inquiry. Prince-
ton University Press, Princeton, 1994.

Donald E. Knuth. The future of tex and metafont. NTG: Maps, 5:145, 1990.

Donald E. Knuth. Literate Programming. CSLI Lecture Notes. Center for the
Study of Language and Information, Stanford, CA, 1992.

Philip Leifeld. texreg: Conversion of R Regression Output to LaTeX or HTML
Tables, 2015. URL http://CRAN.R-project.org/package=texreg. R
package version 1.35.

Friedrich Leisch. Sweave: Dynamic generation of statistical reports using lit-
erate data analysis. In Wolfgang Hérdle and Bernd Roénz, editors, Comp-
stat 2002: Proceedings in Computational Statistics, pages 575—580. Physica
Verlag, Heidelberg, 2002. http://www.stat.uni-muenchen.de/~leisch/
Sweave.

David T. Lykken. Statistical significance in psychological research. Psycholo-
gial Bulletin, 70:151-159, 1968.

John MacFarlane. Pandoc: A Universal Document Converter, 2014. URL
http://johnmacfarlane.net/pandoc/index.html. Version 1.13.0.1.

M C Makel and J A Plucker. Facts are more important than novelty: Repli-
cation in the education sciences. FEducational Researcher, 43(6):304-316,
2014.

Bibliography 281

Norman Matloff. The Art of Programming in R: A Tour of Statistical Pro-
gramming Design. No Starch Press, San Francisco, 2011.

Jill P. Mesirov. Accessible reproducible research. Science, 327(5964):415-416,
2010.

Axel Meyer. Repeating patterns of mimicry. PLoS Biol, 4(10), 2006.

Simon Munzert, Christian Rubba, Peter Meifiner, and Dominic Nyhuis. Au-
tomated Data Collection with R: A Practical Guide to Web Scraping and
Text Mining. Wiley, Chichester, 2015.

Paul Murrell. R Graphics. Chapman and Hall/CRC Press, Boca Raton, FL,
2nd edition, 2011.

Jonathan Nagler. Coding style and good computing practices. PS: Political
Science and Politics, 28(3):488-492, 1995.

Brian A Nosek, Jeffrey R Spies, and Matt Motyl. Scientific utopia: II. Re-
structring incentives and practices to promote truth over publishability.
Perspectives on Psychological Science, 7(6):615-631, 2012.

Cathy O’Neal and Rachel Schutt. Doing Data Science: Straight Talk from the
Frontline. O’Reilly Media Inc., Sebastopol, CA, 2013.

Matt Owen. ZeligBayesian: A Zelig Model, 2011. URL http://gking.
harvard.edu/zelig. R package version 0.1.

Matt Owen, Kosuke Imai, Gary King, and Olivia Lau. Zelig: Everyone’s
Statistical Software, 2013. URL http://CRAN.R-project.org/package=
Zelig. R package version 4.2-1.

Daniel Pemstein, Stephen A. Meserve, and James Melton. Democratic com-
promise: A latent variable analysis of ten measures of regime type. Political
Analysis, 18(4):426-449, 2010.

Roger D Peng. Reproducible research and biostatistics. Biostatistics, 10(3):
405-408, 2009.

Roger D Peng. Reproducible research in computational science. Science, 334:
1226-1227, 2011.

Roger D. Peng. The real reason reproducible research is important.
Simply Statistics, 2014. http://simplystatistics.org/2014/06/06/
the-real-reason-reproducible-research-is-important/.

Heather A Piwowar, Roger S Day, and Douglas B Fridsma. Sharing detailed
research data is associated with increased citation rate. PLoS ONE, 2(3):
1-5, 2007.

282 Bibliography

R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014. http:
//www.R-project.org/.

Norman Ramsey. Noweb: A simple, extensible tool for literate programming.
http://www.cs.tufts.edu/~nr/noweb/, 2011.

C.M. Reinhart and K.S. Rogoff. Growth in a time of debt. American Economic
Review: Papers € Proceedings, 100, 2010.

Brian Ripley and Duncan Murdoch. Rtools: Building R for Windows, 2012.
http://cran.r-project.org/bin/windows/Rtools/.

RStudio, Inc. RStudio: Integrated development environment for R. Boston,
MA, 2015. URL \url{http://www.rstudio.com/}. Version 0.99.

Jeffrey A. Ryan. quantmod: Quantitative Financial Modelling Framework,
2015. URL http://CRAN.R-project.org/package=quantmod. R package
version 0.4-4.

William E Shotts Jr. The Linux Command-line: A Complete Introduction. No
Starch Press, San Francisco, 2012.

Victoria Stodden. The legal framework for reproducible scientific research.
Computing in Science & Engineering, 11(1):35-40, 2009a.

Victoria Stodden. The reproducible research standard: Reducing le-
gal barriers to scientific knowledge and innovation. In Commu-
nia: Global Science & FEconomics of Knowledge-Sharing Institutions
Torino, Italy June 30, 2009b. http://www.stanford.edu/~vcs/talks/
VictoriaStoddenCommuniaJune2009-2.pdf.

Duncan Temple Lang. RJSONIO: Serialize R objects to JSON, JavaScript
Object Notation, 2014. URL http://CRAN.R-project.org/package=
RJSONIO. R package version 1.3-0.

Duncan Temple Lang and the CRAN team. RCurl: General Network
(HTTP/FTP/...) Client Interface for R, 2015. URL http://CRAN.
R-project.org/package=RCurl. R package version 1.95-4.7.

Duncan Temple Lang and the CRAN Team. XML: Tools for Parsing and Gen-
erating XML Within R and S-Plus, 2015. URL http://CRAN.R-project.
org/package=XML. R package version 3.98-1.3.

Terry M Therneau. survival: Survival Analysis, 2015. URL http://CRAN.
R-project.org/package=survival. R package version 2.38-3.

Edward R. Tufte. The Visual Display of Quantitative Information. Graphics
Press, Cheshire, CT, 2nd edition, 2001.

Bibliography 283

Kevin Ushey, Jonathan McPherson, Joe Cheng, and JJ Allaire. packrat: A
Dependency Management System for Projects and their R Package Depen-
dencies, 2015. URL http://CRAN.R-project.org/package=packrat. R
package version 0.4.4.

Ramnath Vaidyanathan, Yihui Xie, JJ Allaire, Joe Cheng, and Kenton Rus-
sell. htmlwidgets: HTML Widgets for R, 2015. URL http://CRAN.
R-project.org/package=htmlwidgets. R package version 0.5.

Gerald van Belle. Statistical Rules of Thumb. John Wiley and Sons, Hoboken,
NJ, 2nd edition, 2008.

P Vandewalle, G Barrenetxea, I Jovanovic, A Ridolfi, and M Vetterli. Ex-
periences with reproducible research in various facets of signal processing
research. Acoustics, Speech and Signal Processing, 4:1253-1256, 2007.

Patrick Vandewalle. Code sharing is associated with research impact in image
processing. Computing in Science & Engineering, 14(4):42-47, 2012.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, New
York, 2nd edition, 2009.

Hadley Wickham. A layered grammar of graphics. Journal of Computational
and Graphical Statistics, 19(1):3-28, 2010.

Hadley Wickham. tidyr: FEasily Tidy Data with spread() and gather() Func-
tions., 2014a. URL http://CRAN.R-project.org/package=tidyr. R
package version 0.2.0.

Hadley Wickham. Advanced R. Chapman and Hall/CRC Press, Boca Raton,
FL, 2014b.

Hadley Wickham. Tidy Data. Journal of Statistical Software, 59(10):1-23,
2014c.

Hadley Wickham. httr: Tools for Working with URLs and HTTP, 2015a. URL
http://CRAN.R-project.org/package=httr. R package version 1.0.0.

Hadley Wickham. rvest: FEasily Harvest (Scrape) Web Pages, 2015b. URL
http://CRAN.R-project.org/package=rvest. R package version 0.2.0.

Hadley Wickham and Winston Chang. devtools: Tools to Make Developing
R Packages Fasier, 2015a. URL http://CRAN.R-project.org/package=
devtools. R package version 1.8.0.

Hadley Wickham and Winston Chang. ggplot2: An Implementation of
the Grammar of Graphics, 2015b. URL http://CRAN.R-project.org/
package=ggplot2. R package version 1.0.1.

284 Bibliography

Hadley Wickham and Romain Francois. dplyr: A Grammar of Data Manipula-
tion, 2015. URL http://CRAN.R-project.org/package=dplyr. R package
version 0.4.2.

Greg Wilson, D A Aruliah, C Titus Brown, Niel P Chue Hong, Matt Davis,
Richard T Guy, Steven H D Haddock, Katy Huff, lan M Mitchell, Mark D
Plumbley, Ben Waugh, Ethan P White, and Paul Wilson. Best practices
for scientific computing. arXiv, 29 November 2012:1-6, November 2012.
Available at: http://arxiv.org/pdf/1210.0530v3.

World Bank. World development indicators, 2015. http://data.worldbank.
org/data-catalog/world-development-indicators.

Yihue Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC
Press, Boca Raton, FL, 2013.

Yihui Xie. animation: A gallery of animations in statistics and utilities to
create animations, 2014. URL http://CRAN.R-project.org/package=
animation. R package version 2.3.

Yihui Xie. formatR: Format R Code Automatically, 2015a. URL http://
CRAN.R-project.org/package=formatR. R package version 1.2.

Yihui Xie. knitr: A General-Purpose Package for Dynamic Report Genera-
tion in R, 2015b. URL http://CRAN.R-project.org/package=knitr. R
package version 1.10.5.

