
Object Oriented
Programming in

PHP
CMPS 183 - Hypermedia and the Web

May 1, 2006

Mark Slater
mslater@soe.ucsc.edu

Object Oriented Basics

• OO programs consist of hierarchies and
webs of Classes.

• Classes contain data and functions that
act on that data.

• Classes can be extended through
inheritance (hierarchy).

• Classes can contain other classes (web).

A Sample PHP Class

<?php

class ImgTagGenerator
{
 function makeImgTag($location)
 {
 if(isset($location) && (strlen(location) > 0))
 {
 echo "\n";
 }
 else
 {
 echo " <!--Image location not specified!-->\n";
 }
 }
}

?>

$this

• PHP reserves the variable $this to
refer to the object whose context the
function was invoked from.

• Usually $this refers to the object the
function belongs to.

$this
<?php

class A
{
 public $num;

 function __construct($num)
 {
 $this->num = $num;
 }

 function getNum()
 {
 return($this->num);
 }
}

class B
{
 public $num;

 function __construct($num)
 {
 $this->num = $num;
 }

 function getNum()
 {
 return($this->num);
 }

 function getANum()
 {
 return(A::getNum());
 }
}

$a = new A(5);
$b = new B("six");

echo "A num = " . $a->getNum() . "
\n";
echo "B num = " . $b->getNum() . "
\n";
echo "A num from B = " . $b->getANum() . "
\n";
?>

$this

• The context in the
getANum()
function is B’s.

• When A’s
getNum() function
is called statically,
the context does not
change.

class B
{
 ...

 function getANum()
 {
 return(A::getNum());
 }
}

Creating and Assigning
Objects

• Just like Java, C++, and other OO
languages, PHP has a new operator that
creates instances of classes.

• Assigning a variable containing an
object to another variable makes a copy.

• Assigning a reference to another
variable does not.

Creating and Assigning
Objects

<?php

class A
{
 public $num;

 function __construct($num)
 {
 $this->num = $num;
 }

 function getNum()
 {
 return($this->num);
 }
}

$orig = new A(5);
$copy = $orig;
$ref =& $orig;

$orig = new A(10);

echo "";
echo "orig num = " . $orig->getNum() . "
\n";
echo "copy num = " . $copy->getNum() . "
\n";
echo "ref num = " . $ref->getNum() . "
\n";
echo "";

?>

Creating and Assigning
Objects

<?php

class A
{
 public $num;

 function __construct($num)
 {
 $this->num = $num;
 }

 function getNum()
 {
 return($this->num);
 }
}

$orig = new A(5);
$copy = $orig;
$ref =& $orig;

$orig->num = 10;

echo "orig num = " . $orig->getNum() . "
\n";
echo "copy num = " . $copy->getNum() . "
\n";
echo "ref num = " . $ref->getNum() . "
\n";

?>

Assigning Objects:
What Just Happened

• In the first example, the
object that $orig pointed
at changed.

• $ref was set to refer to
whatever object or value
that $orig points at.

• $copy still pointed to the
original object.

$orig = new A(5);
$copy = $orig;
$ref =& $orig;

$orig = new A(10);

Assigning Objects:
What Just Happened

• In the second
example, a value
was changed in the
object that $orig
points to.

• Since all three
variables point to
that object, they all
got the new value.

$orig = new A(5);
$copy = $orig;
$ref =& $orig;

$orig->num = 10;

Assigning Objects:
Summery

$orig = new A(5);
$copy = $orig;
$ref =& $orig;

$orig = new A(10);

$orig = new A(5);
$copy = $orig;
$ref =& $orig;

$orig->num = 10;

$orig = 5;
$copy = $orig;
$ref =& $orig;

$orig = 10;

Extending a class

• You can extend a class using the
extends keyword.

• Sub-classes inherit the functions and
member variables of their parent class.

• Multiple-inheritance is not allowed.

• Overriding methods and members is
possible if they are not final.

Extending a class
<?php

class A
{
 public $num;

 function __construct($num)
 {
 $this->num = $num;
 }

 function getNum()
 {
 return($this->num);
 }
}

class Double extends A
{
 function getNum()
 {
 return(parent::getNum() * 2);
 }
}

$double = new Double(5);

echo "double getNum = " . $double->getNum() . "
\n";

?>

Constructors

• Just like Java and C++, you can create a
constructor for your class.

• In PHP, you can only have one
constructor.

• No methods can be overloaded.

• You must explicitly call the parent
constructor.

Constructors

<?php

class ImgTagGenerator
{
 public $location;

 function __construct($location)
 {
 $this->location = $location;
 }

 function makeImgTag()
 {
 echo "location . "\">\n";
 }
}

class ImgWithAltTagGenerator
 extends ImgTagGenerator
{
 public $alt;

 function __construct($location, $alt)
 {
 parent::__construct($location);
 $this->alt = $alt;
 }

 function makeImgTag()
 {
 echo "alt .
 "\" src=\"" . $this->location . "\">\n";
 }
}

?>

Destructors

• PHP also has destructors for cleanup.

• They are automatically called when an
object is explicitly destroyed or all
references have been removed (like
garbage collection).

• Again, you must explicitly call the
parent destructor.

Destructors

function __destruct()
{
 // Do cleanup
}

Constructors and
Destructors

• For objects created with new, the
__construct() and __destruct()
functions must be public.

• You cannot use an object until its
constructor has finished executing.

Visibility: Public,
Protected, and Private

• public variables can be accessed
anywhere, by anyone.

• protected variables can only be
accessed by the class and its sub-
classes.

• private variables can only be
accessed by the class that defines them.

Visibility: Public,
Protected, and Private

• Just like other OO languages, you
should default to private and use
protected accessors for subclasses.

• Only constant values should ever be
public or protected.

• If your class is more like a C struct,
public is appropriate.

Visibility in Functions

• Functions can also be given visibilities
of public, protected, or private.

• Functions without a visibility
declaration are public.

• Explicitly declare the visibility.

• Default to private until a subclass
needs the function.

Scope Resolution
Operator

• Also known as the double colon — ::
• Allows you to access static, constant,

and overridden variables or functions.

• Already seen it in constructors in
destructors.

Scope Resolution
Operator

<?php

class ClassWithConst
{
 const SOME_CONST = 'some const';
}

class ClassWithStatic extends ClassWithConst
{
 private static $someStatic = "a static variable";

 public static function staticFunc()
 {
 echo "parent has ‘" . parent::SOME_CONST
 . "’ and I have ‘" . self::$someStatic
 . "’
\n";
 }
}

ClassWithStatic::staticFunc();

?>

Static

• Variables and functions can be declared
static.

• The static keyword comes after the
visibility keyword.

• You must use the class name to access a
static variable; using an object of that
class’s type will not work.

Static

class Foo
{
 public static $someStatic = "Some Static Variable";
 ...
}

$bar = new Foo();

echo Foo::$someStatic; // this works

echo $bar->someStatic; // this fails
echo $bar::someStatic; // this fails

Constants

• Constant variables are declared with
the keyword const.

• Constants do not have visibility
modifiers.

• Like static variables, const
variables must be accessed using the
class name, not objects of the class type.

Final

• The final keyword prevents subclasses
from overriding a function.

• It can also be used to prevent a class
from being extended at all.

Abstract Classes and
Functions

• If the class is abstract, it can’t be
instantiated.

• If the class has one or more abstract
functions, the class itself must be
declared abstract.

• When overriding abstract methods, the
visibility must be equal or weaker.

Interfaces

• PHP’s interfaces work almost
identically to Java’s interfaces.

• PHP interfaces cannot declare variables.

• They can declare constants.

• All interface functions must be public.

Interfaces

<?php

interface HtmlTag
{
 public function getHtmlTag();
}

class ImgTag implements HtmlTag
{
 public function getHtmlTag()
 {
 ...
 }
}

?>

Iterating Object
Variables

• You can use a foreach statement to
iterate the visible variables of an object.

• Inside an object, that includes all its
private variables, its and its parent
protected variables, and all
public variables in the hierarchy.

Iterating Object
Variables

<?php

class Superclass
{
 public $all = 'parent pub';
 protected $hierarchy = 'parent protected';
 private $me = 'parent private';
}

class Subclass extends Superclass
{
 public $pub = 'child pub';
 protected $prot = 'child protected';
 private $priv = 'child private';

 public function iterateVariables()
 {
 echo "<p>child:
\n";
 foreach($this as $key => $value)
 {
 echo $key . " => " . $value . "
";
 }
 echo "</p>\n";
 }
}

$obj = new Subclass();

$obj->iterateVariables();

echo "<p>outside:
\n";
foreach($obj as $key => $value)
{
 echo $key . " => " . $value . "
";
}
echo "</p>\n";

?>

Assigning Objects
Redux: Cloning

• Objects can be cloned with the clone
keyword.

• By default, PHP will do a shallow copy
on the original object’s variables.

• You can take control of the process by
defining a public __clone() function
to do deep copies, or update transient
variables.

Assigning Objects
Redux: Cloning

class ClassGettingCloned
{
 $private someAggregateObject;

 public function __clone()
 {
 $this->someAggregateObject = clone($this->someAggregateObject);
 }
}

Object Comparison

• Comparison Operator (==)

• Instances are equal when they have
the same variables and values and are
of the same type.

• Identity Operator (===)

• Instances are equal when they are the
same instance of the same class.

Specifying Variable
Types

• The type of a PHP variable can change
with each assignment (dynamic types).

• In functions (in or out of a class), you
can supply a “type hint” that must be
satisfied by any variable passed in that
parameter location.

• Only class types and arrays can be
used; primitive types aren’t supported.

Using Classes to
Standardize Your Site

• Most sites have a standard layout.

• Encapsulate that layout in a class.

• Each page creates an instance of the
class, adds content to the instance, and
the instance renders that page.

Using Classes to
Standardize Your Site

• An example from my work

Questions?

