OBJECT ORIENTED
PROGRAMMING IN
PHP

CMPS 183 - HYPERMEDIA AND THE WEB
MAY 1, 2006

MARK SLATER
MSLATER@SOE.UCSC.EDU

OBJECT ORIENTED BASICS

e OO programs consist of hierarchies and
webs of Classes.

e (lasses contain data and functions that
act on that data.

e (lasses can be extended through
inheritance (hierarchy).

e (Classes can contain other classes (web).

A SAMPLE PHP CLASS

<?php

class ImgTagGenerator

: function makeImgTag($location)
: 1f(isset($location) && (strlen(location) > 0))
. echo "\n%;
}
else
{
echo " <!--Image location not specified!-->\n";
}
¥
¥

$THIS

e PHP reserves the variable $this to

refer to the object whose context the
function was invoked from.

e Usually $this refers to the object the
function belongs to.

$THIS

<?php class B
i
class A public $num;
{
public $num; function __construct($num)
{
function __construct($num) $this->num = $num;
{ 3
$this->num = $num;
} function getNum()
f
function getNum() return($this->num);
{ b
returnC $this->num);
} function getANum()
b i
returnC A::getNum());
}
i
$a = new AC 5);

$b = new B("six");
echo "A num = " . $a->getNum() . "
\n";
echo "B num = " . $b->getNum() . "
\n";
echo "A num from B = " . $b->getANum() . "
\n";

$THIS

e The context in the

getANum()

function is B’s.

e When A’s
getNum() function
is called statically,
the context does not
change.

Anum=>5
B num = six
A num from B = six

class B

function getANum()

-
return(C A::getNum());
ks
}

CREATING AND ASSIGNING
OBJECTS

e Just like Java, C++, and other OO
languages, PHP has a hew operator that

creates instances of classes.

e Assigning a variable containing an
object to another variable makes a copy.

e Assigning a reference to another
variable does not.

CREATING AND ASSIGNING
OBJECTS

<?php

class A

{

public $num;

function __construct($num)
i
$this->num = $num;
i . —
orig num = 10
function getNum()

- returnC $this->num); Copy num — 5

}

} ref num = 10

$orig = new AC 5);
$copy = %orig;

$ref =& $orig;

$orig = new AC 10);

echo "";

echo "orig num = " . $orig->getNum() . "
\n";
echo "copy num = " . $copy->getNum() . "
\n";
echo "ref num = " . $ref->getNum() . "
\n";

echo "";

7>

CREATING AND ASSIGNING
OBJECTS

<?php
class A
{

public $num;

function __construct($num)

i
$this->num = $num; .
} orig num = 10
- copy num = 10
returnC $this->num);
o ref num = 10

$orig = new AC 5);
$copy = $orig;
$ref =& $orig;

$orig->num = 10;

echo "orig num = " . $orig->getNum() . "
\n";
echo "copy num = " . $copy->getNum() . "
\n";
echo "ref num = " . $ref->getNum() . "
\n";

7>

ASSIGNING OBJECTS:
WHAT JUST HAPPENED

e In the first example, the
object that $orig pointed

at changed.

e $ref was set to refer to

whatever object or value
that $orig points at.

e $copy still pointed to the
original object.

$orig = new AC 5);
$copy = $orig;
$ref =& %orig;

$orig = new AC 10);

ASSIGNING OBJECTS:
WHAT JUST HAPPENED

e In the second
example, a value
was changed in the .
object that $orig 222;3 : givgigf 2
points to. Iref =& Sorig;

: $orig->num = 10;
e Since all three ¢

variables point to
that object, they all
got the new value.

ASSIGNING OBJECTS:
SUMMERY

$orig = new AC 5);

$copy = $orig; OI'lg num = 10
$ref =& S%orig;

copy num = 5
ref num = 10

$orig = new AC 10);

$orig = new AC 5);

$copy = $orig; Orlg num = 10
$ref =& S%orig;

copy num = 10
ref num = 10

$orig->num = 10;

$orig = 5; e~
$c0p3 = $orig; Orlg — 10
$ref =& $orig;

: copy =35
$orig = 10;
: ref = 10

EXTENDING A CLASS

You can extend a class using the
extends keyword.

Sub-classes inherit the functions and
member variables of their parent class.

Multiple-inheritance is not allowed.

Overriding methods and members is
possible if they are not f1nal.

EXTENDING A CLASS

<?php

class A

{

public $num;

function __construct($num)

s - s
. double getNum = 10
: return($this->num);
: I
class Double extends A
: function getNum(Q)
j return(parent::getNum() * 2);
}

$double = new Double(5);
echo "double getNum = " . $double->getNum() . "
\n";

7>

CONSTRUCTORS

Just like Java and C++, you can create a
constructor for your class.

In PHP, you can only have one
constructor.

No methods can be overloaded.

You must explicitly call the parent
constructor.

<?php

CONSTRUCTORS

class ImgWithAltTagGenerator

class ImgTagGenerator {

{

public $location;

function __construct($location)

: $this->location = $location;

I:

function makeImgTag()

i echo "location . "\">\n";

7>

extends ImgTagGenerator
public $alt;

function __construct($location, $alt)

{

parent::__construct($location);
$this->alt = $alt;
b
function makeImgTag()
{
echo "<IMG alt=\"""_ $thas—=qlt =
"\" src=\"" . $this->location .
i

ll\ll>\nll ;

DESTRUCTORS

e PHP also has destructors for cleanup.

e They are automatically called when an
object is explicitly destroyed or all
references have been removed (like
garbage collection).

e Again, you must explicitly call the
parent destructor.

DESTRUCTORS

function __destruct()

1
¥

// Do cleanup

CONSTRUCTORS AND
DESTRUCTORS

e For objects created with new, the
= construct() and __destruckt)
functions must be public.

* You cannot use an object until its
constructor has finished executing.

VISIBILITY: PUBLIC,
PROTECTED, AND PRIVATE

e public variables can be accessed
anywhere, by anyone.

e protected variables can only be

accessed by the class and its sub-
classes.

e private variables can only be
accessed by the class that defines them.

VISIBILITY: PUB

LIC,

PROTECTED, AND PRIVATE

e Just like other OO languages, you
should default to private and use

protected accessors for subc

lasses.

e Only constant values shoulc

public or protected.

e If your class is more like a C
public is appropriate.

| ever be

struct,

VISIBILITY IN FUNCTIONS

e Functions can also be given visibilities
of public, protected, or private.

e Functions without a visibility
declaration are public.

e Explicitly declare the visibility.

e Default to private until a subclass
needs the function.

SCOPE RESOLUTION
OPERATOR

e Also known as the double colon — ::

e Allows you to access static, constant,
and overridden variables or functions.

e Already seen it in constructors in
destructors.

SCOPE RESOLUTION
OPERATOR

<?php
! |
B Clas<WithConst parent has 'some const' and I

{ have 'a static variable'
const SOME_CONST = 'some const';

Iy
class ClassWithStatic extends ClassWithConst
{
private static $someStatic = "a static variable";
public static function staticFunc()
{
echo "parent has ‘" . parent::SOME_CONST
"> and I have ‘" . self::$someStatic
e ebrNn '
}
i

ClassWithStatic: :staticFunc();

7>

STATIC

e Variables and functions can be declared
seatic.

e The static keyword comes after the
visibility keyword.

¢ You must use the class name to access a
static variable; using an object of that
class’s type will not work.

STATIC

class Foo
il

public static $someStatic = "Some Static Variable";
¥

$bar = new Foo();
echo Foo::$someStatic; // this works

echo $bar->someStatic; // this fails
echo $bar::someStatic; // this fails

CONSTANTS

e Constant variables are declared with
the keyword const.

e Constants do not have visibility
modifiers.

e Like static variables, const

variables must be accessed using the
class name, not objects of the class type.

FINAL

e The final keyword prevents subclasses
from overriding a function.

e [t can also be used to prevent a class
from being extended at all.

ABSTRACT CLASSES AND
FUNCTIONS

o [f the class is abstract, it can’t be
instantiated.

e [f the class has one or more abstract
functions, the class itself must be
declared abstract.

e When overriding abstract methods, the
visibility must be equal or weaker.

INTERFACES

e PHP’s interfaces work almost
identically to Java’'s interfaces.

e PHP interfaces cannot declare variables.
e They can declare constants.

e All interface functions must be public.

INTERFACES

<?php

interface HtmlTag

{
public function getHtmlTag(Q);

}

class ImgTag implements HtmlTag

g
public function getHtmlTag()

{
}

ITERATING OBJECT
VARIABLES

e You can use a foreach statement to
iterate the visible variables of an object.

e Inside an object, that includes all its
private variables, its and its parent

protected variables, and all
public variables in the hierarchy.

ITERATING OBJECT
VARIABLES

<?php
class Superclass
{
public $all = 'parent pub';
protected $hierarchy = 'parent protected';
private $me = 'parent private';
I
class Subclass extends Superclass
{
public $pub = 'child pub';
protected $prot = 'child protected';
private $priv = 'child private';
public function iterateVariables()
{
echo "<p>child:
\n";
foreach($this as $key => $value)
{
FaliDasiceys oo L Svalue. o N
";
"
acho b </p=\n'"’
¥
}

$obj = new SubclassQ);
$obj->iterateVariables();

echo "<p>outside:
\n";
foreach($obj as $key => $value)
{

i

echo </p= N0k

n L1

echo $key . " = " . $value .

7>

child:

pub => child pub

prot => child protected

priv => child private

all => parent pub

hierarchy => parent protected

outside:
pub => child pub
all => parent pub

"<br‘>'l ;

ASSIGNING OBJECTS
REDUX: CLONING

e Objects can be cloned with the cLone
keyword.

e By default, PHP will do a shallow copy
on the original object’s variables.

* You can take control of the process by
defining a public __clone() function
to do deep copies, or update transient
variables.

ASSIGNING OBJECTS
REDUX: CLONING

class ClassGettingCloned

{
$private someAggregateObject;

public function __clone()

b
$this->someAggregateObject = clone($this->someAggregateObject);

}
}

OBJECT COMPARISON

e Comparison Operator (==

e Instances are equal when they have
the same variables and values and are
of the same type.

e Identity Operator (===

e Instances are equal when they are the
same instance of the same class.

SPECIFYING VARIABLE
TYPES

e The type of a PHP variable can change
with each assignment (dynamic types).

e In functions (in or out of a class), you
can supply a “type hint” that must be
satisfied by any variable passed in that
parameter location.

* Only class types and arrays can be
used; primitive types aren’t supported.

USING CLASSES TO
STANDARDIZE YOUR SITE

e Most sites have a standard layout.
e Encapsulate that layout in a class.

e Each page creates an instance of the
class, adds content to the instance, and
the instance renders that page.

USING CLASSES TO
STANDARDIZE YOUR SITE

 An example from my work

Whisper - UCSC School of Engineering Logout mark
i | Home | | People | | Projects | | Communities \ | Search | | Preferences | \ Help |

work

|| Library About the Whisper Project
! X Whisper is an Academic Workshop designed to allow
Files students, professors, and other researchers to perform thier
""""""""" daily tasks more efficiently. It includes personal and group
Messages digital libraries, versioned file spaces, message boards,
------------------ weblogs, peer-reviewed community journals, and many other
features. You can find more information about the goals of this
Weblog 9

research on the research project website.

Collaborators Status

Currently, Whisper is still in its infancy, and is not yet

available to the general public. Please visit the developmen
Colleagues ilable to the general public. PI isit the development
""""""""" wiki and the development website for more information about
Projects the project status.
Communities

My Work: Library Files Messages Weblog Collaborators Colleagues Projects Communities

Wednasday 26th 2006f April 2006 05:27:23 AM

QUESTIONS?

