
lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

NN AAMMEE
DBD::mSQL / DBD::mysql − mSQL and mysql drivers for the Perl5 Database Interface (DBI)

SSYYNNOOPPSSIISS
use DBI;

$dbh = DBI->connect("DBI:mSQL:$database:$hostname:$port",
undef, undef);

or

$dbh = DBI->connect("DBI:mysql:$database:$hostname:$port",
$user, $password);

@databases = DBD::mysql::dr->func($hostname, ’_ListDBs’);
@tables = $dbh->func(’_ListTables’);

$sth = $dbh->prepare("LISTFIELDS $table");
$sth->execute;
$sth->finish;

$sth = $dbh->prepare("SELECT * FROM foo WHERE bla");
$sth->execute;
$numRows = $sth->rows;
$numFields = $sth->{’NUM_OF_FIELDS’};
$sth->finish;

$rc = $drh->func($database, ’_CreateDB’);
$rc = $drh->func($host, $database, ’_CreateDB’);
$rc = $drh->func($database, ’_DropDB’);
$rc = $drh->func($host, $database, ’_DropDB’);

DDEESSCCRRIIPPTTIIOONN
<DBD::mysql> and <DBD::mSQL> are the Perl5 Database Interface drivers for the mysql, mSQL 1.x and
mSQL 2.x databases. The drivers are part of themysql-modules andMsql-modules packages, respectively.

CCllaassss MMeetthhooddss

ccoonnnneecctt

use DBI;

$dbh = DBI->connect("DBI:mSQL:$database", undef, undef);
$dbh = DBI->connect("DBI:mSQL:$database:$hostname", undef, undef);
$dbh = DBI->connect("DBI:mSQL:$database:$hostname:$port",

undef, undef);

or

use DBI;

4/Jul/98 perl5.004, patch 04 1

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

$dbh = DBI->connect("DBI:mysql:$database", $user, $password);
$dbh = DBI->connect("DBI:mysql:$database:$hostname",

$user, $password);
$dbh = DBI->connect("DBI:mysql:$database:$hostname:$port",

$user, $password);

A database must always be specified.

The hostname, if not specified or specified as ‘’, will default to an mysql or mSQL daemon running on
the local machine on the default port for theUNIX socket.

Should the mysql or mSQL daemon be running on a non-standard port number, you may explicitly
state the port number to connect to in thehostname argument, by concatenating thehostname and
port number together separated by a colon (:) character.

PPrrii vvaattee MMeettaaDDaattaa MMeetthhooddss

LLiissttDDBBss

@dbs = $dbh->func("$hostname:$port", ’_ListDBs’);

Returns a list of all databases managed by the mysql daemon or mSQL daemon running on$host-
name, port $port. This method is rarely needed for databases running onlocalhost: You should
use the portable method

@dbs = DBI->data_sources("mysql");

or

@dbs = DBI->data_sources("mSQL");

whenever possible. It is a design problem of this method, that there’s no way of supplying a host name
or port number todata_sources, that’s the only reason why we still supportListDBs. :−(

LLiissttTT aabblleess

@tables = $dbh->func(’_ListTables’);

Once connected to the desired database on the desired mysql or mSQL mSQL daemon with theDBI-
connect()> method, we may extract a list of the tables that have been created within that database.

ListTables returns an array containing the names of all the tables present within the selected
database. If no tables have been created, an empty list is returned.

@tables = $dbh->func(’_ListTables’);
foreach $table (@tables) {

print "Table: $table\n";
}

LLiissttFFiieellddss
Deprecated, see the section on/COMPATIBILITY ALERT below.

LLiissttSSeelleecctteeddFFiieellddss
Deprecated, see the section on/COMPATIBILITY ALERT below.

4/Jul/98 perl5.004, patch 04 2

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

DDaattaabbaassee MMaanniippuullaattiioonn

CCrr eeaatteeDDBB

DDrr ooppDDBB

$rc = $drh->func($database, ’_CreateDB’);
$rc = $drh->func($database, ’_DropDB’);

or

$rc = $drh->func($host, $database, ’_CreateDB’);
$rc = $drh->func($host, $database, ’_DropDB’);

These two methods allow programmers to create and drop databases fromDBI scripts. Since mSQL
disallows the creation and deletion of databases over the network, these methods explicitly connect to
the mSQL daemon running on the machinelocalhost and execute these operations there.

It should be noted that database deletion isnot prompted for in any way. Nor is it undo-able fromDBI.

Once you issue the dropDB() method, the database will be gone!

These methods should be used at your own risk.

DD AATT AABBAASSEE HHAANNDDLLEESS
The DBD::mysql driver supports the following attributes of database handles (read only):

$infoString = $dbh->{’info’};
$threadId = $dbh->{’thread_id’};

These correspond tomysql_info() andmysql_tread_id(), respectively.

SSTT AATTEEMMEENNTT HHAANNDDLLEESS
The statement handles of DBD::mysql and DBD::mSQL support a number of attributes. You access these
by using, for example,

my $numFields = $sth->{’NUM_OF_FIELDS’};

Note, that most attributes are valid only after a successfullexecute. An undef value will returned in that
case. The most important exception is themysql_use_result attribute: This forces the driver to use
mysql_use_result rather than mysql_store_result. The former is faster and less memory consuming, but
tends to block other processes. (That’s why mysql_store_result is the default.)

To set themysql_use_result attribute, use either of the following:

my $sth = $dbh->prepare("QUERY", { "mysql_use_result" => 1});

or

my $sth = $dbh->prepare("QUERY");
$sth->{"mysql_use_result"} = 1;

Of course it doesn’t make sense to set this attribute before calling theexecute method.

Column dependent attributes, for exampleNAME, the column names, are returned as a reference to an
array. The array indices are corresponding to the indices of the arrays returned byfetchrow and similar
methods. For example the following code will print a header of table names together with all rows:

4/Jul/98 perl5.004, patch 04 3

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

my $sth = $dbh->prepare("SELECT * FROM $table");
if (!$sth) {

die "Error:" . $dbh->errstr . "\n";
}
if (!$sth->execute) {

die "Error:" . $sth->errstr . "\n";
}
my $names = $sth->{’NAME’};
my $numFields = $sth->{’NUM_OF_FIELDS’};
for (my $i = 0; $i < $numFields; $i++) {

printf("%s%s", $$names[$i], $i ? "," : "");
}
print "\n";
while (my $ref = $sth->fetchrow_arrayref) {

for (my $i = 0; $i < $numFields; $i++) {
printf("%s%s", $$ref[$i], $i ? "," : "");

}
print "\n";

}

For portable applications you should restrict yourself to attributes with capitalized or mixed case names.
Lower case attribute names are private to DBD::mSQL and DBD::mysql. The attribute list includes:

ChopBlanks
this attribute determines whether afetchrow will chop preceding and trailing blanks off the column
values. Chopping blanks does not have impact on themax_length attribute.

insertid
MySQL has the ability to choose unique key values automatically. If this happened, the new ID will be
stored in this attribute. This attribute is not valid forDBD::mSQL.

is_blob
Reference to an array of boolean values;TRUE indicates, that the respective column is a blob. This
attribute is valid for MySQL only.

is_key
Reference to an array of boolean values;TRUE indicates, that the respective column is a key. This is
valid for MySQL only.

is_num
Reference to an array of boolean values;TRUE indicates, that the respective column contains numeric
values.

is_pri_key
Reference to an array of boolean values;TRUE indicates, that the respective column is a primary key.
This is only valid for MySQL and mSQL 1.0.x: mSQL 2.x uses indices.

is_not_null
A reference to an array of boolean values;FALSE indicates that this column may containNULL ’s. You
should better use theNULLABLE attribute above which is aDBI standard.

length

max_length
A reference to an array of maximum column sizes. Themax_length is the maximum physically pre-
sent in the result table,length gives the theoretically possible maximum.max_length is valid for
MySQL only.

4/Jul/98 perl5.004, patch 04 4

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

NAME
A reference to an array of column names.

NULLABLE
A reference to an array of boolean values;TRUE indicates that this column may containNULL ’s.

NUM_OF_FIELDS
Number of fields returned by aSELECT or LISTFIELDS statement. You may use this for checking
whether a statement returned a result: A zero value indicates a non-SELECT statement like INSERT,
DELETE or UPDATE.

table
A reference to an array of table names, useful in aJOIN result.

type
A reference to an array of column types. It depends on theDBMS, which values are returned, even for
identical types. mSQL will return types like &DBD::mSQL::INT_TYPE, &DBD::msql::TEXT_TYPE
etc., MySQL uses &DBD::mysql::FIELD_TYPE_SHORT, &DBD::mysql::FIELD_TYPE_STRINGetc.

CCOOMMPP AATTIIBBIILLIITTYY AALLEERRTT
As of version 0.70 DBD::mSQL has a new maintainer. Even more, the sources have been completely
rewritten in August 1997, so it seemed apropriate to bump the version number: Incompatibilities are more
than likely.

RReecceenntt cchhaannggeess::

New connect method
DBD::mSQL andDBD::mysql now use the new connect method as introduced withDBI 0.83 or so. For
compatibility reasons the old method still works, but the driver issues a warning when he detects use of
the old version. There’s no workaround, you must update your sources.(Sorry, but the change was in
DBI, not in DBD::mysql andDBD::mSQL.)

_ListFields returning statement handle
As of Msql-modules 1.1805, the private functions

$dbh->func($table, "_ListFields");

and

$sth->func("_ListSelectedFields");

no longer return a simple hash, but a statement handle.(_ListSelectedFields is a stub now which just
returns$self.) Thisshould usually not be visible, when your statement handle gets out of scope. How-
ev er, if your database handle ($dbh in the above example) disconnects, either because you explicitly dis-
connect or because he gets out of scope, and the statement handle is still active, DBI will issue a warning
for active cursors being destroyed.

The simple workaround is to execute$sth->finish or to ensure that$sth gets out of scope before
$dbh. Sorry, but it was obvious nonsense to support two different things for accessing the basically same
thing: A M (y)SQL result.

The drivers do not conform to the currentDBI specification in some minor points. For example, the private
attributesis_num or is_blob have been writtenIS_NUM and IS_BLOB. For historical reasons we continue
supporting the capitalized names, although theDBI specification now reserves capitalized names for stan-
dard names, mixed case forDBI and lower case for private attributes and methods.

We currently consider anything not conforming to theDBI as deprecated. It is quite possible that we
remove support of these deprecated names and methods in the future. In particular these includes:

4/Jul/98 perl5.004, patch 04 5

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

$sth->func($table, ’_ListSelectedFields’)
highly deprecated, all attributes are directly accessible via the statement handle. For example instead
of

$ref = $sth->func($table, ’_ListSelectedFields’)
my @names = $ref->{’NAME’}

you just do a

my @names = @{$sth->{’NAME’}};

Capitalized attribute names
Deprecated, should be replaced by the respective lower case names.

BB UUGGSS
Theport part of the first argument to the connect call is implemented in an unsafe way when using mSQL.
In fact it is just stting the environment variable MSQL_TCP_PORT during the connect call. If another con-
nect call uses another port and the handles are used simultaneously, they will interfere. I doubt that this will
ev er change.

Please speak up now (June 1997) if you encounter additional bugs. I’m still learning about the DBI API and
can neither judge the quality of the code presented here nor the DBI compliancy. But I’m intending to
resolve things quickly as I’d really like to get rid of the multitude of implementations ASAP.

When running ‘‘make test’’, you will notice that some test scripts fail. This is due to bugs in the respective
databases, not in the DBI drivers:

Nulls
mSQL seems to have problems withNULL ’s: The following fails with mSQL 2.0.1 running on a Linux
2.0.30 machine:

[joe@laptop Msql-modules-1.18]$ msql test
Welcome to the miniSQL monitor. Type \h for help.
mSQL > CREATE TABLE foo (id INTEGER, name CHAR(6))\g
Query OK. 1 row(s) modified or retrieved.
mSQL > INSERT INTO foo VALUES (NULL, ’joe’)\g
Query OK. 1 row(s) modified or retrieved.
mSQL > SELECT * FROM foo WHERE id = NULL\g
Query OK. 0 row(s) modified or retrieved.
+----------+------+
 id name
+----------+------+
+----------+------+
mSQL >

Blanks
mysql has problems with Blanks on the right side of string fields: They get chopped of. (Tested with
mysql 3.20.25 on a Linux 2.0.30 machine.)

4/Jul/98 perl5.004, patch 04 6

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

[joe@laptop Msql-modules-1.18]$ mysql test
Welcome to the mysql monitor. Commands ends with ; or \g.
Type ’help’ for help.
mysql> CREATE TABLE foo (id INTEGER, bar CHAR(8));
Query OK, 0 rows affected (0.10 sec)
mysql> INSERT INTO foo VALUES (1, ’ a b c ’);
Query OK, 1 rows affected (0.00 sec)
mysql> SELECT * FROM foo;
1 rows in set (0.19 sec)
+------+--------+
 id bar
+------+--------+
 1 a b c
+------+--------+
mysql> quit;
[joe@laptop Msql-modules-1.18]$ mysqldump test foo

[deleted]

INSERT INTO foo VALUES (1,’ a b c’);

AA UUTTHHOORR
DDBBDD::::mmSSQQLL has been primarily written by Alligator Descartes (descarte@hermetica.com), who has been
aided and abetted by Gary Shea, Andreas Koenig and Tim Bunce amongst others. Apologies if your name
isn’t listed, it probably is in the file called ’Acknowledgments’. As of version 0.80 the maintainer is
Andreas König.Version 2.00 is an almost complete rewrite by Jochen Wiedmann.

CCOOPPYYRRIIGGHHTT
This module is Copyright (c)1997 Jochen Wiedmann, with code portions Copyright (c)1994-1997 their
original authors. This module is released under the ‘Artistic’ license which you can find in the perl distribu-
tion.

This document is Copyright (c)1997 Alligator Descartes. All rights reserved. Permissionto distribute this
document, in full or in part, via email, Usenet, ftp archives or http is granted providing that no charges are
involved, reasonable attempt is made to use the most current version and all credits and copyright notices
are retained (theAUTHOR andCOPYRIGHT sections). Requests for other distribution rights, including
incorporation into commercial products, such as books, magazine articles or CD−ROMs should be made to
Alligator Descartes <descarte@hermetica.com>.

AADDDDIITTIIOONN AALL DDBBII IINNFFOORRMMAATTIIOONN
Additional information on the DBI project can be found on the World Wide Web at the following URL:

http://www.hermetica.com/technologia/perl/DBI

where documentation, pointers to the mailing lists and mailing list archives and pointers to the most current
versions of the modules can be used.

Information on the DBI interface itself can be gained by typing:

perldoc DBI

right now!

Interface (DBI)"

4/Jul/98 perl5.004, patch 04 7

lib::DBD::mysql(3) UserContributed Perl Documentation lib::DBD::mysql(3)

4/Jul/98 perl5.004, patch 04 8

