c'est exact, 41 est un nombre premier !
(that's correct, 41 is a prime number)

Rexx is a language that can help you to solve these exercices with the instruction numeric digits.

Exercise 1

If q is prime and (2^q)-1 is prime, then M(q) = ( 2^(q-1) ) * ( (2^q)-1 )
is called a perfect number; Among the following numbers, which q does NOT
give a perfect number ?

      2      3      5      7    11    13    17    19     31      61
     89    107    127    521   607  1279  2203  2281   3217    4253
   4423   9689   9941  11213 19937 21701 23209 44497  86243  110503
 132049 216091

A prime number n of the form (2^q)-1 is prime, is called  a Mersenne number and q
is said to be its generator. All Mersenne numbers give a perfect number.

Be careful : the last number has 65050 digits !

Exercise 2 :

I got this file with OCR (where are the mistakes ?)

Nombres premiers inférieurs à 1200
   2    3    5    7   11  13   17   19    23    29   31   37   41   43
  47   53   59   61   67  71   73   79    83    89   97  101  103  107
 109  113  127  131  137  139  149  151  157   163  167  173  179  181
 191  193  197  199  211  223  227  229  233   239  241  251  257  263
 269  271  277  281  283  293  307  311  313   317  331  337  347  349
 353  359  397  373  379  383  389  397  401   409  419  421  431  433
 439  443  449  457  461  463  467  479  487   491  499  503  509  521
 523  541  547  557  563  569  571  577  587   593  599  601  607  613
 617  619  631  641  643  647  653  659  661   673  677  683  691  701
 709  719  727  733  739  743  751  757  761   769  773  787  797  809
 811  821  823  827  829  839  853  857  859   863  877  881  883  887
 907  911  919  929  937  941  947  953  967   971  977  983  991  997
1009 1013 1019 1021 1031 1033 l039 1049 1051  1061 1063 1069 1087 1091
1093 1097 1103 1109 1117 1123 1129 1151 1153  1163 1171 1181 1187 1193

Nombres premiers au voisinage de 4096
3877 3881 3889 3907 3911 3911 3919 3923 3929 3931 3943 3947 3967 3989
4001 4003 4007 4013 4019 4021 4027 4049 4051 4057 4073 4079 4091 4093
4099 4111 4127 4129 4133 4139 4153 4157 4159 4177 4201 4211 4217 4219
4229 4231 4241 4243 4253 4259 4261 4271 4273 4283 4289 4297 4327 4337


Nombres premiers au voisinage de 2^32 = 4 294 967 296
4294966553 4294966583 4294966591 4294966619 4294966639 4294966651 4294966657
4294966661 4294966667 4294966769 4294966813 4294966829 4294966877 4294966909
4294966927 4294966943 4294966981 4294966997 4294967029 4294967087 4294967111
4294967143 4294967161 4294967189 4294967197 4294967231 4294967279 4294967291
4294967311 4294967357 4294967371 4294967377 4294967387 4294967389 4294967459
4294967477 4294967497 4294967513 4294967539 4294967543 4294967549 4294967561
4294967563 4294967569 4294967597 4294967627 4294967639 4294967653 4294967681
4294967687 4294967701 4294967723 4294967î59 4294967779 4294967783 4294967791