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Abstract

High-throughput sequencing based techniques, such as 16S rRNA gene profiling, have the potential to elucidate the
complex inner workings of natural microbial communities - be they from the world’s oceans or the human gut. A key step in
exploring such data is the identification of dependencies between members of these communities, which is commonly
achieved by correlation analysis. However, it has been known since the days of Karl Pearson that the analysis of the type of
data generated by such techniques (referred to as compositional data) can produce unreliable results since the observed
data take the form of relative fractions of genes or species, rather than their absolute abundances. Using simulated and real
data from the Human Microbiome Project, we show that such compositional effects can be widespread and severe: in some
real data sets many of the correlations among taxa can be artifactual, and true correlations may even appear with opposite
sign. Additionally, we show that community diversity is the key factor that modulates the acuteness of such compositional
effects, and develop a new approach, called SparCC (available at https://bitbucket.org/yonatanf/sparcc), which is capable of
estimating correlation values from compositional data. To illustrate a potential application of SparCC, we infer a rich
ecological network connecting hundreds of interacting species across 18 sites on the human body. Using the SparCC
network as a reference, we estimated that the standard approach yields 3 spurious species-species interactions for each true
interaction and misses 60% of the true interactions in the human microbiome data, and, as predicted, most of the erroneous
links are found in the samples with the lowest diversity.
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Introduction

The study of natural communities using high throughput

genomic surveys, such as 16S rRNA gene profiling, has become

routine [1], yet the development of appropriate, well validated

analysis methods is still ongoing. The first challenge is obtaining

reliable and informative counts from 16S rRNA gene sequences by

filtering spurious reads and grouping the remaining reads in a

meaningful way [2], [3], [4]. Once such counts have been

obtained, analysis techniques which are appropriate for discrete

survey data need to be applied [5], [6] [7].

A common goal of genomic surveys is to identify correlations

between taxa within ecological communities. Correlation analysis

provides a well trodden path to achieving this goal, but we show

that it is not valid when applied to genomic survey data (GSD),

and may produce misleading results. The challanges associated

with GSD stem from the fact that they are a relative, rather than

absolute, measure of abundances of community components. The

counts comprising these data (e.g., 16S rRNA gene reads) are set

by the amount of genetic material extracted from the community

or the sequencing depth, and analysis typically begins by

normalizing the observed counts by the total number of counts.

The resulting fractions fall into a class of data termed closed or

compositional, and poses its particular geometrical and statistical

properties [8], [7]. Specifically, standard methods for computing

correlations from GSD are theoretically invalid. Correlation

estimates are biased by the fact that, since they must sum to 1,

fractions are not independent and tend to have a negative

correlation regardless of the true correlation between the

underlying absolute abundances (termed the basis abundances)

[9]. Thus, correlations estimates often reflect the compositional

nature of the data, and are not indicative of the underlying

biological processes [10]. In fact, in 1897 Karl Pearson warned

against ‘‘attempts to interpret correlations between ratios whose

numerators and denominators contain common parts’’ [11], and

since that time it has been shown that many other standard

analysis techniques are invalid when applied to such compositional

data, and that their interpretation is unreliable and often

misleading [10], [12], [13]. Nonetheless, these methods remain

the primary tools used in studies of microbial ecology.

Although approaches to compositional data analysis have been

developed (e.g. [13], [14]), the basic task of inferring dependencies

between components remains an outstanding challenge. A widely

used method is Aitchison’s test for complete subcompositional
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independence [15], which tests whether any dependencies are

present, but does not indicate which components are correlated,

nor the magnitude of the correlation. Filzmoser and Hron [16]

recently developed a method for inferring correlations in

compositional data after an appropriate mathematical transfor-

mation, but their method does not provide a mapping relating the

correlations of the transformed variables to those of the underlying

genes or species.

In this paper, we first use simulations and real-world data from

the Human Microbiome Project (HMP) to demonstrate that GSD

can be severely biased by ‘‘compositional’’ effects, and then

identify the factors the modulate their severity. Finally, we present

a novel method, called SparCC, and show that it can infer

correlations with high accuracy even in the most challenging data

sets.

Results

Standard correlation inference techniques perform
poorly on GSD

To what extent do compositional artifacts affect real-world

GSD? We applied standard statistical methods to 16S rRNA gene

survey data from the Human Microbiome Project (HMP) [17],

which measure the compositions of microbial communities found

in different body sites of *200 individuals. The composition of

each community is described in terms of operational taxonomic

units (OTUs). Because only relative abundances for each OTU are

available, these data qualify as compositional and are thus subject

to potential biases as described above.

Networks inferred from Standard Pearson correlation display

distinct patterns within different body sites, suggestive of biological

structure (Fig. 1, left column. See Fig. S1 for all 18 HMP body

sites). Specifically, a prominent feature of the mid-vagina,

retroauricular crease, and buccal mucosa networks is the presence

of an OTU that is negatively correlated with multiple other

OTUs. Despite the temptation to attribute biological significance

to these observations, correlation networks inferred from randomly

shuffled data with similar taxon abundances, but lacking any

correlations between OTUs (see Materials and Methods), repro-

duce this feature (Fig. 1, middle column) indicating that it may

arise from the closure (normalization) process.

The mechanism behind these spurious correlations is straight-

forward. The pattern observed in the mid-vagina network results

from the dominance of OTU 3, a Lactobacillus. This OTU has a

median abundance of 97%, so fluctuations in its relative

abundance have a strong effect on the abundance of the rest of

the community simply due to the requirement that the relative

abundances of all OTUs sum to 100%: when the abundance of

Lactobacillus varies, all other OTUs’ relative abundances vary in

unison in the opposite direction creating artificial negative

correlations with Lactobacillus, and artificial positive correlations

with each other.

Diversity and correlation density control the severity of
compositional effects

Compositional effects are severe in some datasets, but mild in

others. We found that diversity of the samples in the dataset (often

referred to as alpha diversity), is a good predictor of the strength of

compositional effects, which diminish with increased diversity.

Intuitively, the fewer OTUs comprise the community, the worse

the compositional effects are, with the extreme case of a

community composed of only two OTUs, which will always

appear to be perfectly negatively correlated. Moreover, composi-

tional effects can be significant even in communities comprised of

multiple OTUs, if only a few OTUs dominate the community.

This notion of diversity can be quantified using the Shannon

effective number of OTUs,(neff ) [18], which quantifies both the

number of OTUs and the dominance in a community. neff ranges

from 1, when the community is completely dominated by a single

OTU, to the number of OTUs in the community (richness), when

all OTUs are equally abundant.

Simulated networks of varying neff (see Material and Methods)

with known correlations illustrate the effect of diversity on

compositional artifacts. True correlations (Fig. 2A–C) are only

recovered when the community is diverse (Fig. 2F). In networks of

similar diversity to the HMP samples, inferred connections are

often dominated by negative correlations to the dominant OTU,

which leads to positive correlations among the remaining OTUs

(Fig. 2D,E). This effect is so strong that it eliminates the negative

correlation between OTU 4 and OTUs 3 and 5, and positive

correlation between OTUs 1 and 2 (Fig. 2E). Worse yet, as

diversity decreases further, the negative correlation between OTU

4 and OTUs 3 and 5 is turned into an apparently positive one

(Fig. 2D). It is important to note that these compositional effects

are not limited to Pearson correlation, and are also present in non-

parametric correlations, such as Spearman correlations (Fig. S2).

If the underlying network has true positive correlations, then

compositional effects can be even more pronounced than expected

based on the community diversity. This happens because strong

correlations between components lowers the effective diversity of

the sample (i.e., two OTUs that are perfectly correlated behave as

a single OTU). This effect can confound naive efforts to correct for

compositional effects by comparing observed correlations against

shuffled networks. When the data are shuffled, as in the middle

column of Fig. 1, few spurious connections may arise relative to

the structure observed for the unshuffled data (as observed for the

buccal mucosa samples), creating false confidence in the observed

network. Thus, randomization is not sufficent to establish

significance of observed correlations, nor is it possible to identify

correlations by comparing against (or ‘‘subtracting out’’) a

randomized network.

SparCC: a novel procedure for inferring correlations
from GSD

Here, we describe a new technique for inferring correlations

from compositional data called SparCC (Sparse Correlations for

Compositional data). SparCC estimates the linear Pearson

correlations between the log-transformed components. Since these

correlations cannot be computed exactly (as described below),

SparCC utilizes an approximation which is based on the

assumptions that: (i) the number of different components (e.g.,

OTUs or genes) is large, and (ii) the true correlation network is

Author Summary

Genomic survey data, such as those obtained from 16S
rRNA gene sequencing, are subject to underappreciated
mathematical difficulties that can undermine standard
data analysis techniques. We show that these effects can
lead to erroneous correlations among taxa within the
human microbiome despite the statistical significance of
the associations. To overcome these difficulties, we
developed SparCC; a novel procedure, tailored to the
properties of genomic survey data, that allow inference of
correlations between genes or species. We use SparCC to
elucidate networks of interaction among microbial species
living in or on the human body.

Correlation Networks of Genomic Surveys
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‘sparse’ (i.e., most components are not strongly correlated with each

other). Later, we show that SparCC is surprisingly robust to

violations of the sparsity assumption. SparCC does not rely on any

particular distribution of the basis variables, i.e. the true abundances

in the community can follow any distribution, and the choice of the

log-normal distribution in subsequent examples is motivated solely

by ease of implementation and empirical fit. For clarity, we present

the method in the context of 16S rRNA gene data, where the

components are OTUs and the basis variables are their true

abundances in a community, but SparCC can be applied to any

compositional data for which its approximation is valid.

Like most compositional data analysis techniques, SparCC is

based on the log-ratio transformation:

yij~log
xi

xj

~log xi{log xj , ð1Þ

where xi is the fraction of OTU i. This transformation carries

several advantages: First, the new variables yij contain information

regarding the true abundances of OTUs, as the ratio of fractions is

equal to the ratio of the true abundances. Second, unlike the

fractions themselves, the ratio of the fractions of two OTUs is

independent of which other OTUs are included in the analysis, a

property termed subcompositional coherence. Third, this trans-

formation is mathematically convenient, as the new variables yij

are no longer limited to the simplex, but are free to assume any

real value. Taking the logarithm removed the positivity constraint,

and induces (anti) symmetry in the treatment of the variables.

To describe the dependencies in a compositional dataset,

Aitchison suggested using the quantity

tij:Var log
xi

xj

� �
~Var yij

� �
, ð2Þ

where the variance is taken across all samples [12]. When OTUs

are perfectly correlated, their ratio is constant, therefore tij~0,

whereas the ratio of uncorrelated OTUs varies and the

corresponding tij is large. Though tij contains information

Figure 1. Similar correlation networks are observed for real world vs. randomly shuffled bacterial abundance data. Correlation
networks based on 16S rRNA gene survey data collected as part of the Human Microbiome Project (HMP), inferred using Pearson correlations (left
column), and SparCC (right column). Additionally, Pearson correlation networks were inferred from shuffled HMP data (middle column), where all
OTUs are independent. The Pearson networks inferred from shuffled data show patterns similar to the ones seen in the Pearson networks of the real
data, especially for low diversity body sites. This indicates that the observed Pearson network structure may be due to biases inherent in
compositional data rather than a real biological signal. In contrast, no significant correlation were inferred from the shuffled data using SparCC (data
not shown). Nodes represent OTUs, with size reflecting the OTU’s average fraction in the community. Edges between nodes represent correlations
between the nodes they connect, with edge width and shade indicating the correlation magnitude, and green and red colors indicating positive and
negative correlations, respectively. For clarity, only edges corresponding to correlations whose magnitude is greater than 0.3 are drawn. See Fig. S1
for all 18 HMP body sites.
doi:10.1371/journal.pcbi.1002687.g001

Correlation Networks of Genomic Surveys
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regarding the dependence between the OTUs, it is hard to

interpret as it lacks a scale. That is, it is unclear what constitutes a

large or small value of tij (does a value of 0.1 indicate strong

dependence, weak dependence, or no dependence?). This can be

further appreciated by relating tij to our quantity of interest, the

correlation between the true abundances of the OTUs. The

relation is given by

tij~v2
i zv2

j {2rijvivj , ð3Þ

where v2
i and v2

j are the variances of the log-transformed basis

abundances of OTUs i and j, and rij is the correlation between

them. It is now evident that tij can only be interpreted in relation

to the basis abundance’s variances: tijvv2
i zv2

j indicates a

positive correlation, and tijwv2
i zv2

j indicates a negative

correlation. Ideally, we would like to solve the set of eqs. 3 for

all OTU pairs and simultaneously infer both the basis variances

and correlations. However, because there are more un-

known variables than equations, this is not generally possible.

Nonetheless, it is possible to obtain a good approximation of the

variances if, on average, OTUs are uncorrelated. Once we obtain

estimates of the basis variances, these can be plugged into eqs. 3 to

infer the correlations between each OTU pair, which, unlike the

average correlations, needn’t be small.

More accurate estimation can be achieved by iterating the

above procedure. At each iteration the strongest correlated OTU

pair identified in the previous iteration is excluded from the basis

variance estimation. This reinforces sparsity among the remaining

pairs and yields better variance and correlation estimates.

OTU fractions need to be estimated from the observed counts

to apply SparCC. Normalizing each OTU by the total counts in

the sample (the maximum-likelihood estimate) is unreliable for

rare OTU because it overestimates the number of zero fractions

[19]. This can give rise to artifacts that are driven by variations in

the sequencing depth. These artifacts have motivated some

authors to downsample their data such that all samples have the

same total counts, however downsampling does nothing to

alleviate compositional effects, and requires discarding a substan-

tial portion of the available data. Therefore, we employed a

Figure 2. Pearson correlations inference quality deteriorates with decreasing diversity. Basis data was simulated with a known correlation
structure. OTU counts were generated by randomly drawing from the basis, and were subsequently subject to both correlation inference procedures.
(A–C) True basis correlation network. (D–F) Networks inferred using standard procedure. (G–I) Networks inferred using SparCC. The average
community diversities, as given by the Shannon entropy effective number of components neff , used in the simulations and observed in the HMP data
are indicated on left indicates. As in Fig. 1, nodes represent OTUs, with size reflecting the OTU’s average fraction in the community. Nodes represent
OTUs, with size reflecting the OTU’s average fraction in the community. Edges between nodes represent correlations between the nodes they
connect, with edge width and shade indicating the correlation magnitude, and green and red colors indicating positive and negative correlations,
respectively. For clarity, only edges corresponding to correlations whose magnitude is greater than 0.3 are drawn.
doi:10.1371/journal.pcbi.1002687.g002

Correlation Networks of Genomic Surveys

PLOS Computational Biology | www.ploscompbiol.org 4 September 2012 | Volume 8 | Issue 9 | e1002687



Bayesian approach to estimate component fractions (see Materials

and Methods), which allows the assessment of the robustness of

downstream analysis and the assignment of confidence values.

SparCC is highly accurate on simulated data
We used the previously described simulated datasets to

demonstrate the accuracy of SparCC at inferring correlations,

even in highly problematic compositional data dominated by a

single OTU (Fig. 2G–I). A more systematic evaluation of

SparCC was performed by creating multiple simulated datasets

of varying diversity and density. We measure density as the

average Pearson correlation between OTUs, such that denser

datasets have more strongly correlated OTUs, challenging the

sparsity assumption used by SparCC. For each combination of

density and diversity, multiple true correlation networks were

assigned, and corresponding data was sampled. Networks

inferred by SparCC or standard correlations were evaluated

using the root-mean-square error (RMSE) (Fig. 3). Standard

techniques only gave reasonable estimates for very diverse, sparse

networks (Pearson RMSE *0:02), whereas for networks with

diversity comparable to those observed in the HMP set, the

Pearson RMSE was unacceptably high, reaching *0:5 for

communities with diversity similar to the mid-vagina. Spearman

correlations performed only marginally better (Fig. S3A). By

contrast, the performance of SparCC was independent of

diversity, and gave improved results for all parameter values,

even for dense networks in which the sparsity assumption is

violated. In fact, the worst accuracy achieved by SparCC

(*0:02, for unrealistically dense networks), was comparable to

the best accuracy achieved using standard correlations on highly

diverse samples. Moreover, though stronger correlation can be

estimated more reliably, using standard methods, attention needs

to be restricted to exceptionally strong correlations before the

accuracy improves significantly, and the resulting accuracy is at

best comparable to SparCC’s accuracy (Fig. S5).

SparCC identifies phylogenetically structured correlations
in HMP data

We used SparCC to infer the taxon-taxon interaction networks

from the HMP data sets (Fig. 1, right column, Fig. 4), and from their

corresponding shuffled datasets (in which all OTUs are uncorre-

lated). In contrast to the naive approach shown in Fig. 1, SparCC

found no significant correlations in the shuffled dataset (Dataset S1).

For the real data, however, numerous correlations are found, which

differed significantly from the standard Pearson correlations.

SparCC inference indicated that on average *3=4 of the correlated

OTU pairs identified using Pearson were false, and that *2=3 of

the correlated OTU pairs were missed using Pearson (see Table S1

for breakdown by body site.). Of particular note, we observe a

positive correlation between OTU 3 and OTU 148, both belonging

to the Lactobacillus genus, which was absent from the Pearson

network, likely because of the bias of the highly abundant OTU 3

toward making negative correlations. Intriguingly, using SparCC

we observe a higher likelihood of positive correlations between

phylogenetically related taxa (Table S2), a finding that on its surface

seems to support a role for neutral community dynamics as related

organisms are likely to inhabit similar niches, but do not seem to

dominate by competitive exclusion (although more complicated

scenarios are certainly possible). We anticipate that techniques such

as SparCC will play a major role in analyzing these data to address

this and other basic ecological questions.

Discussion

In this study we have focused on an outstanding challenge of

compositional data analysis – inference of correlations. We have

Figure 3. SparCC outperforms standard inference. Root-mean-square error (RMSE) of both Pearson (A) and SparCC (B) inferred correlations, as
a function of the density of the underlying correlation network, as given by the probability that any pair of components be strongly correlated p, and
community diversity, as given by the Shannon entropy effective number of components neff . SparCC errors are smaller than Pearson errors for all
parameter values. For the maximal diversity plotted, 50 effective OTU, the inference error obtained using Pearson correlations is greatly decreased.
Therefore, it is likely that Pearson correlations perform well on gene expression data, where the effective number of genes is typically in the hundreds
or thousands. For each combination of density and diversity, multiple basis correlation networks were randomly generated, and corresponding data
was sampled and used for correlation estimation. Dots labeled mid-vagina and gut indicate the average diversity observed in the mid-vagina and gut
communities, and the density of their estimated correlation networks. Dots labeled 2D–I indicate the diversity and density used to generate the
communities analyzed in Fig. 2.
doi:10.1371/journal.pcbi.1002687.g003
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demonstrated that compositional effects are pronounced in 16S

rRNA gene surveys of the human microbiome, and, motivated by

the properties of this data, have developed a novel procedure for

estimating correlations.

We found that diversity of species and density of interactions are

the two key factors that influence the severity of compositional

effects on correlation estimates, with low diversity, high density

data being the most challenging to infer correlation from using

standard methods. SparCC does not rely on high diversity, rather

it only requires sparsity of correlations, but in practice is robust

even when the sparsity assumption is strongly violated (%30 of all

component pairs are strongly correlated). Therefore, we recom-

mend that SparCC be used on any GSD that has low diversity: as

a rule of thumb we recommend an effective number of

components of at least 50 for standard techniques (with the

potential caveat that if strong positive correlations are present

among many OTUs, the effective diversity may be much lower

than estimated). We emphasize that simply having many

components is not sufficient to avoid compositional effects. For

example, 16S rRNA gene surveys from the HMP include

hundreds to thousands of distinct OTUs, yet have have a relatively

low effective number of species, with a small number of species

dominating most samples.

An important subclass of GSD are genome-wide surveys

conducted using techniques such as DNA microarrays, RNA-seq

and ChIP-seq. These genome-wide data are also subject to

compositional effects, however, as these data tend to have high

diversity, they are likely to be much less severe or negligible. For

example, the average effective number of genes in microarray

experiments available through the M3D database [20] was 2200
for S. cerevisiae and 1800 for E. coli. This may explain why to date

comparatively less attention has been paid to compositional effects

in the biological sciences than in other disciplines.

The preponderance of zero values are another area of concern

with GSD. These zeros can represent either components that are

truly absent from the community, or rare components that, by

chance, were not present in the sample drawn from the

community. Without additional knowledge, these options are

indistinguishable, and, depending on goal of the analysis, the

researcher must decide how to interpret them, and choose analysis

methods accordingly. We emphasize that the treatment of zero

values is a challenge that is in no way unique to compositional

data, but is merely highlighted by the log-ratio transformations

employed to analyze these data [21]. In this study, we eliminate

zero fractions by adding small pseudocounts, as detailed in the

Materials and Methods. Complementary approaches, where zeros

are treated differently than non-zero values, are substantially more

challenging, and are the subject of ongoing research [22].

Though the method presented in this paper allows detection of

correlation within communities, many challenges still remain.

First, SparCC relies on having reliable component counts, which

as noted in the introduction, is not trivial. Second, the correlations

estimated by SparCC measure the linear relationship between log

transformed abundances. Compositional methods for inferring

more general dependencies between components, equivalent to

rank correlations and mutual information for non-compositional

data, have not yet been developed. Third, relating the patterns

detected within a community to external factors (e.g. relating the

composition of a human gut microbial community to human

health status), and detecting temporal patterns within and between

communities requires non-standard, compositional approaches.

While some such methods exist [13], [12], [23] they are rarely

employed in the context of GSD, and are not tailored for its

particular properties. Finally, GSD is often associated with

phylogenetic information (relatedness of species or genes), which

ideally would be included in the analysis (e.g. the weighted

UniFrac distance, which attempts to capture differences in both

abundance and phylogenetic composition of communities.). We

believe that developing systematic, statistically-sound methods for

such analyses of compositional GSD is a necessary step on the

road to understanding the structure of biological communities, the

processes by which they evolve, and the forces that shape them,

and thus represents an important direction for future research.

Materials and Methods

HMP 16S rRNA gene data
HMP OTU counts and their taxonomic classification were

obtained from the HMPOC dataset, build 1.0, available at http://

hmpdacc.org/ [24]. The dataset corresponding to high-quality

reads from the v3–5 region was used. Only samples from the May

Figure 4. HMP correlation networks inferred using SparCC.
Networks inferred using SparCC from the same data as in Fig. 1 (see Fig.
S2 for SparCC networks of all HMP body sites). No correlations with
magnitude greater than the 0.3 cutoff were inferred from the shuffled
data (not shown). Nodes represent OTUs, with size reflecting the OTU’s
average fraction in the community, and color corresponding to the
phylum to which the OTU belongs. Edges between nodes represent
correlations between the nodes they connect, with edge width and
shade indicating the correlation magnitude, and green and red colors
indicating positive and negative correlations, respectively. For clarity,
only edges corresponding to correlations whose magnitude is greater
than 0.3 are drawn, and unconnected nodes are omitted. See Fig. S6 for
all 18 HMP body sites.
doi:10.1371/journal.pcbi.1002687.g004

Correlation Networks of Genomic Surveys
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1st production study were included in the analysis. Additionally, if

multiple samples were obtained from the same body site of an

individual, only the first sample collected was included in the

analysis. For each body site, the data was further filtered by removing

samples for which less than 500 reads were collected and OTUs that

were, on average, represented by less than 2 reads per sample.

Shuffled HMP datasets
Shuffled datasets are created by assigning each OTU in each

sample a number of counts that is randomly sampled from the

OTU’s observed counts across all samples, with replacement. This

procedure ensures that the resulting marginal distributions of counts

of each OTU alone are the same as in the real data, and that there

are no correlations between the OTUs in the simulated data.

Simulated basis datasets for basis correlations estimation
Simulated communities were generated by sampling the joint

abundances of 50 OTUs from a log-normal distribution with a

given mean and covariance matrix. The mean abundances were

equal for all OTUs except OTU 1, whose abundance was set such

that the community will have a given effective number of OTUs

(neff ), on average. The variance was set to :01 for all OTUs, and

random covariance matrices were generated by assigning each

OTU pair a probability p of being perfectly correlated, with

positive or negative correlations being equally probable. The

resulting random symmetric matrix was then converted to the

nearest positive-definite matrix to ensure it is a valid covariance

matrix. 500 individuals were randomly sampled from each of these

communities to give counts data similar to the one contained in

GSD.

For each combination of the parameters neff and p, 50 such

random communities were simulated, and the correlation infer-

ence accuracy was quantified using the root-mean-squared error

averaged over all OTU pairs, given by:

RMSE~
1

D(D{1)

X
iwj

Dr̂rij{rij D ð4Þ

The final inference error is given by averaging the inference error

of all 50 runs.

Effective number of species
The entropy effective number of species of a community, is

defined as

neff ~eH , ð5Þ

where H~{
P

i xi logxi is the entropy of the community [18].

Sample entropies were computed according to the method

descried by Chao and Shen [25], as implemented in the R

‘entropy’ package [26]. For each body-site, the effective

number of species reported in the main text is the average of

the effective number of species of all samples corresponding to

that body-site.

Estimation of component fractions
We adopt a bayesian framework for estimating the true fractions

from the observed counts. Assuming unbiased sampling in the

sequencing procedure, and a uniform prior, the posterior joint

fractions distribution is the Dirichlet distribution [27]:

p(xDN)~Dir(Nz1), ð6Þ

where x and N are vectors of the components’ true fractions and

observed counts, respectively. Unlike Maximum-Likelihood esti-

mation, the bayesian approach results in the full joint distribution

of fractions, rather than their point estimates.

Point estimates of fraction values, if desired, can be given by the

the mean of the posterior distribution:

x̂xMAP~
Nz1PD

i~1 (Niz1)
: ð7Þ

which is equivalent to adding a pseudocount of 1 to all count

values, and normalize by the total number of counts in each

sample. However, we prefer setting the estimator of true fractions

to be a random sample from this posterior distribution. This

randomness avoids the detection of spurious correlations between

rare components, which arrises since the fractions resulting from

adding a fixed value pseudocount mirror the sampling depth.

Additionally, repeating downstream analysis using many such

randomly drawn estimators allows the quantification of the effects

of sampling noise on the analysis (one can attempt to model the

noise analytically, but this often challenging in practice).

It is important to note that in SparCC, like in any method

employing log transformations, some pre-processing is required to

eliminate zero values. As described above, SparCC employes a

variation of the well-known pseudocounts method which assigns a

small fraction to OTUs that were not detected in a sample. This

approach implicitly assumes that all components are in fact

present in the sample, and that all zero value result from finite

detection resolution [19]. For very rare OTUs who are only

present at a few samples, this may not be a reasonable assumption.

Even if this assumption holds, typically there is not enough

information to reliably estimate correlations involving such

components, and such components should not be included in

the correlation analysis.

Basic SparCC
As noted in the main text, the quantity

tij:Var log
xi

xj

� �
, ð8Þ

contains information about the dependence between components i
and j, and can be related to the basis correlations. The relation is

obtained

tij:Var log
xi

xj

� �
~Var log

wi

wj

� �
~Var log wi{log wj

� �
~Var log wi½ �zVar log wj

� �
{2Cov log wi,log wj

� �
:v2

i zv2
j {2rijvivj ,

ð9Þ

where v2
i and v2

j are the variances of the log-transformed basis

variables i and j, and rij is the correlation between them [10]. Our

aim is to exploit relation 9 to infer the unobserved covariance

matrix of the log transformed basis variables V, from Aitchison’s

variation matrix T, whose elements are tij . Unfortunately, this is

impossible for the most general case, since the basis variances are

unknown a priori, and the system of equations for all pairs of

components is underdetermined, as it involves D(D{1)=2
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equations and D(Dz1)=2 variables (D variances and D(D{1)=2
correlations). In fact, even the D variance variables alone, with all

correlations set to zero, allow solving eq. 9 for up to three

components. Therefore, at least four components are required to

detect deviations from complete independence between all

components (this is related to the fact that Aitchison’s test for

complete subcompositional independence is only effective when at

least four components are analyzed [28]).

Since an exact solution cannot be found, we SparCC utilizes an

approximation, which is valid when there are many components

which are only sparsely correlated. Eq. 9 can be rearranged to give

the following expression for the correlation:

rij~
v2

i zv2
j {tij

2vivj

, ð10Þ

which, given the basis variances can be solved to give the basis

correlations. Therefore, we employ the following approximation

procedure to estimate the basis variances: First, define the

variation of component i as

ti:
XD

j~1

tij~dv2
i z

X
j=i

v2
j {2

X
j=i

rijvivj

~dv2
i 1z

1

d

X
j=i

v2
j

v2
i

{2
1

d

X
j=i

rij

vj

vi

" #

:dv2
i 1zS

vj

vi

� �2

T
i

{2Srij

vj

vi

T
i

" #
,

ð11Þ

where d:D{1, and S:Ti represents averaging over all pairs

involving component i. Next, assume that the correlation terms in

eq. 11 are small, i.e.

1zS
vj

vi

� �2

Ti&2Srij

vj

vi

Ti, ð12Þ

and neglect them, yielding the approximate set of equations:

ti^dv2
i z

X
j=i

v2
j ,i~1,2, . . . D: ð13Þ

Finally, solve eq. 13 to obtain the approximated basis variances to

be plugged into eq. 10, yielding values of the basis correlations.

To elucidate the nature of this approximation, consider the case

where all the basis variables have the same variance v. The

assumption made in eq. 12 simplifies to:

1&SrijTi, ð14Þ

i.e., we assume that the average correlations are small, rather than

requiring that any particular correlation be small.

Using the above approximation, the basic inference procedure

is the following:

1. Estimate the component fractions in all the samples as outlined

above, to obtain the fractions matrix X.

2. Compute the variation matrix T.

3. Compute the component variations ftig.
4. Solve eqs. 13 to get an approximate value for all basis variances

fvig.

5. Plug the estimated log-basis variances into eqs. 9 to obtain the

basis correlations frijg.

Iterative SparCC
The basic inference procedure can be improved upon by

employing the following iterative refinement scheme (Fig. 5):

1. Estimate correlations using the basic procedure described

above.

2. Identify the most strongly correlated pair of components that

was not previously excluded. If the magnitude of this strongest

correlation exceeds a given threshold, add this pair to the set of

excluded pairs. Otherwise, terminate the estimation procedure.

3. Identify components that form only excluded pairs and

completely exclude them from the analysis. Since the

assumptions of our method are not met by such components,

it is unable to infer their correlations. If all components but

three are excluded, terminate the estimation procedure, as the

sparsity assumption is violated for the whole system.

4. If any components were excluded, re-estimate the fractions of

the remaining components. Note that the new fractions are

relative to the new subset of components.

5. Calculate the component variations t
(n)
i , excluding all strongly

correlated pairs. That is, if c
(n)
i is the set of indices of

components identified to be strongly correlated with compo-

nent i at the previous, nth, iteration, then

t
(nz1)
i ~

X
j=[c

(n)
i

tij : ð15Þ

6. Use the newly computed component variations to compute the

basis correlations, as in steps 4 and 5 of the basic inference

procedure.

7. Repeat steps 2 through 6 for a given number of iterations, or

until no new strongly correlated pairs are identified.

Note that the iterative procedure can result in correlations

whose magnitude is greater than 1, indicating that too many pairs

were excluded. Setting a higher exclusion threshold, or a lower

iteration number will remedy this fallacy, though the resulting

approximation is likely to be of poor accuracy.

Basis correlation can also be inferred using transformed

variables (see Text S1). However, the iterative exclusion detailed

above improves the quality of the approximation, making SparCC

superior to these alternatives (Fig. S1)

To account for the sampling noise, the inference procedure is

repeated multiple times, each time with fraction values drawn

randomly from their posterior distribution, generating a distribu-

tion of each pairwise correlation. The median value of each

pairwise correlation distribution is taken as its estimated value. In

this work, a threshold of 0:1 and a maximal number of 20
iterations were chosen, and the iterative procedure was repeated

100 times.

Comparison of HMP networks inferred using Pearson and
SparCC

For each body site, pairwise correlations between all OTUs

were inferred using both Pearson and SparCC as described above.

Interaction networks were subsequently build by connecting all

OTU pairs that had a correlation magnitude greater than a given
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threshold. Results reported in the main text were obtained using a

threshold value of 0:3. Comparison between corresponding

Pearson and SparCC networks was done by treating the SparCC

network as the true one, and computing the number of true-

positives (TP), false-positives (FP), true-negatives (TN) and false-

negatives (FN) detected in the Pearson network. The above

quantities were calculated as following:

TP~number of edges that have the same sign

in both networks,

TN~number of edges are missing from both networks,

FP~number of edges that appear only in the Pearson

networkz
1

2
number of edges that have different signs,

FN~number of edges that appear only in the SparCC

networkz
1

2
number of edges that have different signs:

Assessing statistical significance
The statistical significance of the inferred correlations can be

assessed using a bootstrap procedure. First, a large number of

simulated datasets, where all components are uncorrelated, are

generated as described in Material and Methods. Next, correla-

tions are inferred from each simulated dataset using SparCC with

the same parameter setting as is used for the original data. Finally,

for each component pair, pseudo p-values are assigned to be

proportion of simulated data sets for which a correlation value at

least as extreme as the one computed for the original data was

obtained.

Computer implementation
All analysis and procedures were implemented in Python,

utilizing the Numpy [29] and Networkx [30] modules. Plotting

was done using the Matplotlib [31] module.

Supporting Information

Dataset S1 Correlation values for all HMP body sites inferred

using both Pearson and SparCC from real and shuffled data.

(ZIP)

Figure S1 Similar correlation networks are observed
for real world vs. randomly shuffled bacterial

Figure 5. Flow chart of iterative basis correlation inference procedure.
doi:10.1371/journal.pcbi.1002687.g005
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abundance data. Correlation networks based on 16S survey

data collected as part of the Human Microbiome Project (HMP),

inferred using Pearson correlations (left column), and SparCC

(right column). Additionally, Pearson correlation networks were

inferred from shuffled HMP data (middle column), where all

OTUs are independent. This figures is extends Fig. 1 to include all

18 HMP body sites.

(PDF)

Figure S2 Spearman correlations inference quality
deteriorates with decreasing diversity. Like Pearson

correlations, Spearman correlations are also affected by the

compositionally of the data and yield correlation networks that

are only marginally more accurate than Pearson correlation

networks (compare Fig. 2). Data simulation procedure and

parameter values are identical to those used in Fig. 2.

(PDF)

Figure S3 Root-mean-square error (RMSE) of both
Spearman CLR inferred correlations. The accuracy of

Spearman correlations (A) is comparable to that of Pearson

correlations. CLR correlations (B) are more accurate than both

Pearson and Spearman correlation, but not as accurate as SparCC

correlations (compare Fig. 3). Note that the Spearman correlations

estimated from the fractions were compared to the true basis

Spearman correlations, rather than Pearson correlations. Data

simulation procedure and parameter values are identical to those

used in Fig. 3.

(PDF)

Figure S4 CLR correlations are strongly biased when a
small number of components is analyzed. RMSE of

SparCC (A) and CLR (B) correlations for datasets composed of 5

components. Data is simulated as described in Materials and

Methods section of main text.

(PDF)

Figure S5 SparCC is more accurate than alternative
correlations even when considering only the strongest
detected correlations. RMSE of SparCC, Pearson and

Spearman correlations whose inferred magnitude exceeds a given

threshold. Data is simulated as described in Materials and

Methods section of main text. Note that the Spearman correlations

estimated from the fractions were compared to the true basis

Spearman correlations, rather than Pearson correlations.

(PDF)

Figure S6 HMP correlation networks inferred using
SparCC. Networks inferred using SparCC from the same data as

in Fig. 6. This figures is extends Fig. 4 to include all 18 HMP body

sites.

(PDF)

Table S1 Accuracy of HMP Pearson networks compared to

SparCC networks.

(DOC)

Table S2 Correlation between OTUs decreases with phyloge-

netic distance.

(DOC)

Text S1 Correlation inference using transformed variables.

(PDF)
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21. Martı́n-Fernández J, Barceló-Vidal C, Pawlowsky-Glahn V (2003) Dealing with

zeros and missing values in compositional data sets using nonparametric

imputation. Math Geol 35: 253–278.

22. Aitchison J, Egozcue JJ (2005) Compositional data analysis: Where are we and

where should we be heading? Math Geol 37: 829–850.

23. Barcelo-Vidal C, Aguilar L, Martin-Fernandez JA (2011) Compositional

VARIMA time series. In: Pawlowsky-Glahn V, Buccianti A, editors.

Compositional Data Analysis. Chichester, West Sussex, UK: Wiley. pp. 87–

103.

24. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR

amplification and sequencing artifacts on 16S rRNA-Based studies. PLoS ONE

6: e27310.

25. Chao A, Shen T (2003) Nonparametric estimation of shannon’s index of

diversity when there are unseen species in sample. Environ Ecol Stat 10: 429–

443.

26. Hausser J, Strimmer K (2009) Entropy inference and the james-stein estimator,

with application to nonlinear gene association networks. J Mach Learn Res 10:

1469–1484.

27. Gelman A, Carlin J, Stern H, Rubin D (2003) Bayesian data analysis. London,

UK: Chapman and Hall/CRC press. 696 pp.

Correlation Networks of Genomic Surveys

PLOS Computational Biology | www.ploscompbiol.org 10 September 2012 | Volume 8 | Issue 9 | e1002687



28. Woronow A, Butler J (1986) Complete subcompositional independence testing of

closed arrays. Comput Geosci 12: 267–279.
29. Oliphant T (2007) Python for scientific computing. Comput Sci Eng 9: 10–20.

30. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure,

dynamics, and function using networkx. In: Varoquaux G, Vaught T, Millman

J, editors. Proceedings of the 7th Python in Science Conference; 19–24 August,

2008; Pasadena, California, United States. pp. 11–15.

31. Hunter J (2007) Matplotlib: A 2d graphics environment. Comput Sci Eng 9: 90–

95.

Correlation Networks of Genomic Surveys

PLOS Computational Biology | www.ploscompbiol.org 11 September 2012 | Volume 8 | Issue 9 | e1002687


